Table of Contents

1 Introduction ... 7

2 Installation Steps ... 9

3 Preparing New Machine with Windows 2012 R2 .. 11
 3.1 X-UM Connector System Requirements ... 11
 3.1 Latest Software Version to Download ... 11
 3.2 Windows 2012 R2 Server Roles & Features .. 12
 3.3 Setting the Network Interface .. 12

4 Adding Machine to Domain ... 13

5 Updating Windows with Latest Microsoft Update ... 17

6 Installing Unified Communications Managed API 5.0 19

7 Installing Skype for Business Component ... 21

8 Installing X-UM Connector Wizard .. 25

9 Activating X-UM Connector ... 29
 9.1 Adding DNS 'A Record' .. 30

10 Configuring X-UM Connector ... 33
 10.1 Setting X-UM Connector Configuration ... 33
 10.2 Adding Users to X-UM Connector ... 34

11 Obtaining the License ... 35

12 Configuring the SBC in X-UM Solution ... 39
 12.1 X-UM Connector SIP Interface .. 40
 12.2 SBC Configuration Fundamentals ... 40

13 Using X-UM Connector Debugging Tools ... 41
 13.1 X-UM Log .. 41
 13.2 X-UM Connector Running in Console Mode .. 41
 13.3 Syslog ... 41
 13.4 OCS Logger and Wireshark .. 41

A Creating Virtual Machine on Hyper-V for X-UM Connector 43
 A.1 Creating the X-UM Connector Virtual Machine ... 43
 A.2 Configuring X-UM Connector Virtual Machine ... 48

B INI File Example ... 51
This page is intentionally left blank.
Notice

Information contained in this document is believed to be accurate and reliable at the time of printing. However, due to ongoing product improvements and revisions, AudioCodes cannot guarantee accuracy of printed material after the Date Published nor can it accept responsibility for errors or omissions. Updates to this document can be downloaded from https://www.audiocodes.com/library/technical-documents.

This document is subject to change without notice.

Date Published: November-28-2017

WEEE EU Directive

Pursuant to the WEEE EU Directive, electronic and electrical waste must not be disposed of with unsorted waste. Please contact your local recycling authority for disposal of this product.

Customer Support

Customer technical support and services are provided by AudioCodes or by an authorized AudioCodes Service Partner. For more information on how to buy technical support for AudioCodes products and for contact information, please visit our Web site at www.audiocodes.com/support.

Abbreviations and Terminology

Each abbreviation, unless widely used, is spelled out in full when first used.
Related Documentation

<table>
<thead>
<tr>
<th>Document Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-UM Configuration Guide</td>
</tr>
</tbody>
</table>

Document Revision Record

<table>
<thead>
<tr>
<th>LTRT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40725</td>
<td>Initial document release for Version 1.0</td>
</tr>
</tbody>
</table>

Documentation Feedback

AudioCodes continually strives to produce high quality documentation. If you have any comments (suggestions or errors) regarding this document, please fill out the Documentation Feedback form on our Web site at http://online.audiocodes.com/documentation-feedback.
1 Introduction

Office 365™ Microsoft Exchange Online Unified Messaging (UM) provides voice mail for Exchange mailboxes “in the cloud”. To allow telephony equipment to communicate securely with the Office 365 network, customers are required to deploy AudioCodes’ Mediant Session Border Controllers (SBCs) which have been tested for interoperability with Unified Messaging (UM).

Starting July 2018, Office 365 Microsoft Exchange Online Unified Messaging (UM) will no longer support direct connectivity of 3rd party PBXs and IP PBXs using Session Border Controller (SBC). This guide describes AudioCodes X-UM Connector, a software product that enables voice mail connectivity from 3rd party PBXs and IP PBXs to Office 365 Microsoft Exchange Online Unified Messaging (UM) using customer’s existing Skype for Business Server infrastructure while supporting existing features such as “Message Waiting Indication” and “Play Voicemail on Phone”.

The X-UM solution is available in two main configurations:

- **X-UM Standard based on CloudBond Standard Plus**

 In this configuration, the X-UM Connector is installed in the CloudBond environment (Mediant 800) as an additional Virtual Machine (VM). It is activated in the CloudBond Skype for Business server environment.

 The customer needs to connect this CloudBond server to the company’s environment (Skype / PBX / exchange).

- **X-UM Connector as a standalone server**

 In this configuration, the customer needs to dedicate a machine for the X-UM Connector, and install and activate it, as described below, on an existing Skype for Business server topology configured to work with Office 365 Microsoft Exchange Online Unified Messaging.

 This document details the installation procedure for **X-UM Connector as a standalone server**. For **X-UM Standard based on CloudBond Standard Plus** installation refer to LTRT-26790 AudioCodes X-UM Configuration Ver. 3.0.
This page is intentionally left blank.
2 Installation Steps

This section summarizes the steps required for setting up and activating the X-UM Connector machine:

1. Preparing the new machine with Windows 2012 R2 - see Chapter 3 on page 11.
2. Adding the machine to the domain - see Chapter 4 on page 13.
3. Updating Windows with the latest Microsoft update - see Chapter 5 on page 17.
4. Installing UCMA 5.0 - see Chapter 6 on page 19.
5. Installing the Skype for Business Component - see Chapter 7 on page 21.
6. Installing the X-UM Connector Wizard - see Chapter 8 on page 25.
7. Activating X-UM Connector - see Chapter 9 on page 29.
8. Configuring the X-UM Connector - see Chapter 10 on page 33.
9. Obtaining the License - see Chapter 11 on page 35.
12. Creating Virtual Machine on Hyper-V for X-UM Connector - see Appendix A on page 43.
13. Ini file example – see Appendix B on page 51.
This page is intentionally left blank.
3 Preparing New Machine with Windows 2012 R2

The X-UM Connector runs on Windows 2012 R2 – on both virtual and physical machines. The paragraphs below describe how to prepare Windows 2012 R2 for the X-UM Connector.

3.1 X-UM Connector System Requirements

The X-UM Connector's minimum requirements are listed below:

<table>
<thead>
<tr>
<th>System Requirements</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation System</td>
<td>Windows 2012 R2 standard</td>
</tr>
<tr>
<td>Processor</td>
<td>4 Core</td>
</tr>
<tr>
<td>Memory</td>
<td>6 GB</td>
</tr>
<tr>
<td>Disk size</td>
<td>Minimum 50 Gb. We recommend 80 Gb.</td>
</tr>
</tbody>
</table>

Note: In Appendix A, you can find a step-by-step example that shows how to create a virtual machine for the X-UM Connector, using the Hyper-V Manager.

3.1 Latest Software Version to Download

The latest X-UM Connector software can be downloaded from:

Copy the downloaded file to the C:\xUM_InstallationFiles folder on the X-UM Connector machine.
3.2 **Windows 2012 R2 Server Roles & Features**

Make sure that the following **Server Roles** and **Features** are enabled using the Server Manager.

- **Server Roles to enable:**
 - File and Storage Services – File and iSCSI Services – File Server
 - File and Storage Services – Storage Services

- **Features to enable:**
 - Media Foundation
 - SMB 1.0/CIFS File Sharing Support
 - User Interface and Infrastructure – Graphical Management Tools and Infrastructure
 - User Interface and Infrastructure – Server Graphical Shell
 - Windows PowerShell – Windows PowerShell 4.0
 - Windows PowerShell – Windows PowerShell 2.0 Engine
 - Windows PowerShell – Windows PowerShell ISE
 - WoW64 Support

3.3 **Setting the Network Interface**

Set the X-UM Connector network interface with the correct IP address, subnet, default gateway and DNS.
4 Adding Machine to Domain

The procedure below describes how to add the machine to the domain.

➢ To add a machine to the domain
1. Log in to the machine as a local user.
2. From the Desktop, select the My Computer icon and right-click to view the settings.

Figure 4-1: My Computer - Properties

Figure 4-2: Change Settings Link
5. On the System Properties screen, click **Change**.

![Figure 4-3: System Properties](image)

6. Change the **Computer Name** and **Domain**, and then click **OK**.

![Figure 4-4: System Properties - Change](image)
7. Insert the user name and password of your domain, and then click **OK**.

![Figure 4-5: Windows Security](image)

8. Restart the X-UM machine.
This page is intentionally left blank.
5 Updating Windows with Latest Microsoft Update

In this step, we assume that the machine is ready with Windows 2012 R2 in the customer domain, and configured with the system requirements as detailed in Section 3.1 on page 11.

The procedure below describes how to update Windows with the latest Microsoft operating system update.

➢ To perform a Windows update:

2. Update Windows with the latest update.

Figure 5-1: Windows Update

3. We recommend you disable automatic updates at the end of the process (turn off Automatic Updates), so the X-UM machine will not update itself while in production.
This page is intentionally left blank.
6 Installing Unified Communications Managed API 5.0

The procedure below describes how to install Unified Communications Managed API (UCMA) 5.0.

➢ To install UCMA 5:
1. Log on to the X-UM Connector as Domain/Skype Administrator and install UCMA 5.
2. Download UCMA 5 from either:
3. Run the UCMA 5.0 UcmaRuntimeSetup.exe setup file as the Administrator.

Figure 6-1: UCMA 5.0 Setup
4. When the installation has completed, the following screen appears:

![Installation Complete Screen](image)

Figure 6-2: Installation Complete

5. Click **Finish**.
7 Installing Skype for Business Component

The procedure below describes how to install the Skype for Business (Local Configuration Store) component using the Skype for Business Deployment wizard, and the Skype for Business Cumulative Update (CU).

➢ To install Skype for Business Local Configuration Store:
1. Log in to the X-UM Connector with domain credentials.
2. Run the Microsoft Skype for Business Deployment wizard.

Note: If the installation is running in the customer hardware environment, the customer needs to provide the Skype for Business Deployment wizard.

Figure 7-1: Skype for Business Server – Check Updates

3. Click the Connect to the internet to check for updates option, and then click Install.
4. Accept the terms in the license agreement, and then click **OK**; the following screens appear:

Figure 7-2: End User License Agreement

![End User License Agreement](image1)

Figure 7-3: Deployment Wizard

![Deployment Wizard](image2)
5. Click Finish.
➢ To install Skype for Business Cumulative Update (CU):

1. Open PowerShell and stop Skype Services:

 Stop-CsWindowsService

2. Copy the same CU used on the Skype for Business system to the X-UM and run it as the Administrator.

3. Follow the instructions to update Skype for Business components.

4. Start Skype Services:

 Start-CsWindowsService
8 Installing X-UM Connector Wizard

The procedure below describes how to install the X-UM Connector application using the X-UM Connector wizard setup file.

➢ To install the X-UM Connector wizard:

1. Run the X-UM setup file from C:\xUM_InstalltionFiles\XUMConnector-x.x.x.x.msi.

Figure 8-1: Run XUMConnector File

The following screen appears:

Figure 8-2: XUMConnector File Setup

2. Click Next.
3. Confirm the Destination Folder, and then click Next.

4. Click Install.
5. Click **Finish**.
This page is intentionally left blank.
9 Activating X-UM Connector

The procedure below describes how to activate X-UM Connector on the Skype for Business environment (Trusted application).

➢ To activate X-UM Connector:
1. From the Windows menu, right-click on Search pane.
2. Enter "activate".
3. Right-click on activate XUMConnector.

4. Click Run as administrator; the following screen appears:

5. Follow the script messages and continue to the next sub-section.
9.1 Adding DNS 'A Record'

The procedure below describes which DNS 'A record' needs to be added.

➢ To add a DNS A Record:

1. During the X-UM Connector Activate process (as shown above), a message appears advising you to add a DNS A record to the DNS server.

Figure 9-3: Activate X-UM Connector

2. When the message shown above appears, add the DNS record manually on the DNS server, used by the X-UM Connector, and then click Retry to re-check it.

Figure 9-4: Activate X-UM Connector - OK

3. Click OK.
4. The screen displays a message that the activation was successfully completed.
5. Validate that the X-UM Connector service is running:
 - Service name: XUMConnector
 - Service display name: AudioCodes XUMConnector
This page is intentionally left blank.
10 Configuring X-UM Connector

This section describes how to configure the X-UM Connector by doing the following:
- Setting the X-UM Connector configuration for customer environment.
- Creating users in CloudBond 365 using the CloudBond 365 GUI – or use the life cycle management capability to create the users automatically.
- Adding users manually to X-UM Connector.

10.1 Setting X-UM Connector Configuration

The procedure below describes how to set the X-UM Connector configuration.

1. Connect to the X-UM Connector server using Remote Desktop.
2. Edit the C:\Program Files\AudioCodes\XUMConnector\Config\System.config file.

The following important parameters’ default values will have to be changed according to your environment:
- **outboundHost** - The host or IP address for outbound connections – SBC/Gateway IP
- **outboundPort** - The port for outbound connections
- **proxyListenPort** - X-UM Connector listening port
- **exchUmNumber** - Number to dial to log to your Exchange UM mailbox (no need to enter the mailbox number when dialing via this number via the X-UM Connector)
- **exchUmNoPin** - If true, then no user PIN is required when dialing to Exchange UM

Note: For more information about the System Configuration file, read C:\Program Files\AudioCodes\XUMConnector\Config\README-configuration.txt.
10.2 Adding Users to X-UM Connector

The procedure below describes how to add users to X-UM server. The users must be enabled for Skype Enterprise Voice. Currently it’s a manual procedure using a csv file. In the future, it will be automatically like the Lifecycle Management.

To add users to X-UM Connector:
1. Connect to X-UM Connector server via remote desktop
2. Edit the C:\Program Files\AudioCodes\XUMConnector \Users\users.csv file

Note: Changes made to the file are immediately applied. There is no need to restart the service.

This file contains the list of users for the application
The file must be in CSV format with a header line containing field 'SipUri' and 'Extension'
SipUri must be the full SIP URI of the user to register, for example 'sip:user1@example.org'
The Extension field is optional, and is used to map a phone extension registration and its SIP URI.
If extension is empty then the configured Lync tel URI will be used
Sample file contents:
SipUri,Extension
sip:user1@example.net , 4001
Empty lines, and lines beginning with '#' are ignored

SipUri,Extension
11 Obtaining the License

The procedure below describes how to obtain the license from AudioCodes. The system will work with a maximum of three users without a license. To obtain a license, you need to get the X-UM machine ID first by doing the following:

➢ To get the X-UM machine ID
3. Open the License link and click on the /license/machineId link.

Figure 11-1: RestServer API

The following screen appears:

Figure 11-2: GET license/machineID

The following screen appears:
4. Click GET license/machineID; the following screen appears:

![Figure 11-3: Try it out!]

```plaintext
er/license/machineId
```

Response Class (Status 200)
string

Response Content Type: application/json

Try it out!

5. Click Try it out!; the following screen appears:

![Figure 11-4: License Response Body]

```
curl -X GET --header 'Accept: application/json' "http://localhost:8000/license/machineId"
```

Response URL
http://localhost:8000/license/machineId

Response Body
```
"40541d2f6d3354583fbdcf6ef96e1653"
```

Response Code
200

6. Under ‘Response Body’ heading, the Machine ID appears within quotes (" ").

7. Supply the Machine ID, without quotes, to AudioCodes.

8. Activate the license after receiving the license from AudioCodes by doing the following:
 a. On the License screen, click POST.
 b. Insert the license string that you received from AudioCodes, in the Value field under the Parameters heading.

Note: Make sure you enter the license string WITH quotes (" ").
Figure 11-5: Inserting License String

9. Click Try it out!
This page is intentionally left blank.
12 Configuring the SBC in X-UM Solution

The telephony connection between the IP-PBX, PBX or PSTN to Skype and X-UM Connector is performed using the SBC/Gateway.

The IP-PBX, PBX or PSTN will be referred to as IP-PBX. 'A' refers to the IP-PBX extension or external number while 'B' refers to the IP-PBX extension.

The SBC participates in the following X-UM scenarios:

- **'A' calls 'B' on the IP-PBX, and call is forwarded to the Exchange UM to leave a voice message**

 In this scenario, the SBC will route the call to the Meditation server running on the Front End Server. The SBC will have to manipulate the numbers to match the user's numbers format.

- **'A' calls to log in to the Exchange UM**

 In this scenario, the SBC will route the call to the X-UM Connector, which will convert 'A's phone number to an 'A' SIP URI and will use it to log in to the mailbox. The SBC will have to manipulate the number to match the user's numbers on the X-UM Connector user file. In this flow, by default, use the direct login without entering the mailbox number and PIN.

 Note: This scenario can be routed to the Mediation server using the special Exchange Login number. In this case, the Exchange will ask you to enter mailbox 'A' and the PIN number.

- **MWI Interrogate (MWI Subscribe)**

 In this scenario, the IP-PBX checks the Message Waiting Indicator (MWI) state per extension (It is used most of the time after phone/IP-PBX has been reset). The SBC will route these messages to the X-UM Connector. The SBC will have to manipulate the number to match the user's numbers on the X-UM Connector user file.

- **MWI Notify**

 In this scenario, the X-UM Connector sends a MWI SIP Notify to the IP-PBX. The SBC will route these messages from the X-UM Connector to the IP-PBX. The SBC will have to manipulate the number to match IP PBX extensions. The X-UM Connector support solicited MWI and unsolicited MWI.

- **Play on Phone**

 In this scenario, the user uses the Play on Phone feature on the Exchange UM. When the user opens a Voice message, it can play the message on the phone instead of the computer.

 If the user enters the SIP URI user or Tel URI user as the destination, the call will be routed using the X-UM Connector, to the SBC and IP-PBX.

 If the user enters a non-user number, the call will be routed to the SBC and IP PBX, using the Mediation server. The SBC have to route these calls correctly.
Callback
In this scenario, the user logs in to the mailbox and dials out from it, back to the caller who left the voice message.
If the user is calling a SIP URI user or Tel URI user, the call will be routed using the X-UM Connector, to the SBC and IP-PBX.
If the user enters a non-user number, the call will be routed using the Mediation server to the SBC and IP-PBX.

12.1 X-UM Connector SIP Interface
The X-UM SIP interface supports TCP only. The default listening port is '5070'. However, it can be changed using the Configuration file. The X-UM Connector will answer SIP Option messages. The SBC can check that the X-UM connector is running, using SIP Option messages.

12.2 SBC Configuration Fundamentals
The SBC must be set to work with Skype for Business according to SBC documentation (e.g., handle refer locally, security settings). According to the above scenarios you need to set the routing between the IP PBX, X-UM Connector and Mediation server.
Number manipulation should be done according to the Skype for Business Tel URI and according to the X-UM user's file that holds phone numbers for mapping between SIP URI and IP PBX phone numbers.

Notes:
- The SBC must be set to work in Skype for Business according to SBC documentation.
- You need to set the routing between the IP-PBX and the X-UM Connector and Mediation server, according to the above scenarios.
- Number manipulation should be done according to the Skype Tel URI X-UM user's files that hold phone numbers for mapping between SIP URI and IP PBX phone numbers.

For an ini file example, see Appendix B on page 51.
13 Using X-UM Connector Debugging Tools

This section describes the following X-UM Connector debugging tools.

- X-UM Log
- X-UM Connector Running in Console Mode
- Syslog
- OCS Logger and Wireshark

13.1 X-UM Log

The X-UM Connector writes logs to C:\Program Files\AudioCodes\XUMConnector\log.

13.2 X-UM Connector Running in Console Mode

When you run X-UM Connector in Console mode, it will provide an online console with the log messages in it.

➢ To run the X-UM Connector in console mode:
1. Stop the AudioCodes XUM Connector service.
2. Search for 'Run XUMConnector' in Console mode and run it as the Administrator.
3. When you finish the debug, stop the console by pressing "q" and run the service again.

13.3 Syslog

The X-UM Connector supports Syslog.

➢ To configure Syslog:
2. Edit the C:\Program Files\AudioCodes\XUMConnector\Config\System.config file.
3. Add and configure the following parameters:
 - **syslogEnabled** - Enables logging to the Syslog server. The default value is 'False'.
 - **syslogServer** - Defines the Syslog server IP address.

Note: The **syslogServer** value must be an IPv4 address. Names are not allowed because IPv6 is not supported. The default value is "127.0.0.1".

- **syslogPort** - Syslog server port Default Value = "514"

13.4 OCS Logger and Wireshark

OCS Logger and Wireshark can be used to take traces of the SIP messages.

The tools can be found under C:\Program Files\AudioCodes\XUMConnector\Tools.
This page is intentionally left blank.
A Creating Virtual Machine on Hyper-V for X-UM Connector

This appendix describes an example of how you can create a Virtual Machine on the Hyper-V for the X-UM Connector, when you have a Hyper-V virtual hard disk (VHDX) with Windows 2012 R2.

A.1 Creating the X-UM Connector Virtual Machine

The procedure below describes how to create the X-UM Connector virtual machine.

➢ To create the X-UM Connector virtual machine:
1. Open the Hyper-V Manager.
2. Right-click on your physical server name (tree item); the following screen appears:

![Hyper-V Manager](Image)

3. Click New; and then select Virtual Machine; the following screen appears:

![Before You Begin](Image)
4. Click Next; the following screen appears:

Figure A-3: Specify Name and Location

5. In the 'Name' field, enter "XUM".
6. Select the 'Store the virtual machine in a different location' check box.
7. Click Browse.
8. In the 'Location' field, enter the storage path to hold the VM.
9. Click Next.

Figure A-4: Specify Name and Location – Updated Location
10. Click **Next**; the following screen appears:

![Figure A-5: Specify Generation](image)

11. Select the correct **Generation** option according to your VHDX, and then click **Next**; the following screen appears:

![Figure A-6: Assign Memory](image)
12. In the 'Startup memory' box, allocate **6144 MB** to the machine, and then click **Next**; the following screen appears:

Figure A-7: Configure Networking

![Configure Networking]

13. From the 'Connection' drop-down list, select the correct network card; and then click **Next**.

Figure A-8: Connect Virtual Hard Disk

![Connect Virtual Hard Disk]

14. Click the **Use an existing virtual hard disk** option.
15. In the 'Location' field, browse to the location of your VHDX.

16. Click **Next**.

Figure A-9: Completing the New Virtual Machine Wizard

17. Click **Finish**.
A.2 Configuring X-UM Connector Virtual Machine

The procedure below describes how to configure the Virtual Machine.

➢ To configure the X-UM Connector Virtual Machine:

1. Start the Hyper-V Manager.

 ![Figure A-10: Hyper-V Manager](image)

2. Right-click on 'xUM', and then select Settings.

 ![Figure A-11: Virtual Machines](image)

3. From the 'Settings' drop-down list, select Processor.

 ![Figure A-12: Processor Settings](image)
A. Creating Virtual Machine on Hyper-V for X-UM Connector

4. From the 'Hardware' drop-down list, modify the number of virtual processors to "4".

 Figure A-13: Number of Virtual Processors

5. From the 'X-UM' drop-down list, select **Automatic Start Action**.

 Figure A-14: X-UM - Automatic Start Action
6. Select the **Always start this virtual machine automatically** option, and then click **OK**.

![Figure A-15: X-UM - Automatic Start Action – Startup Delay](image)
IN1 File Example

In reference to Section 12.2 on page 40, an ini file example is shown below:

```
;****************
;** Ini File **
;****************

;Board: M800B
;HW Board Type: 69 FK Board Type: 72
;Serial Number: 7559363
;Slot Number: 1
;Software Version: 7.20A.152.009
;DSP Software Version: 5014AE3_R => 721.09
;Board IP Address: 172.17.240.102
;Board Subnet Mask: 255.255.255.240
;Board Default Gateway: 172.17.240.97
;Ram size: 512M Flash size: 64M Core speed: 500Mhz
;Num of DSP Cores: 3 Num DSP Channels: 30
;Profile: NONE

;;Key features: Board Type: M800B Security: IPSEC
MediaEncryption StrongEncryption EncryptControlProtocol ;IP Media: VXNL ;Channel Type: DspCh=30 ;HA ;DSP Voice features: IpmDetector RTCP-XR ;EITrunks=1 ;TITrunks=1 ;FXSPorts=4 ;FXOPorts=0 ;Coders: G723 G729 G728 NETCODER GSM-FR GSM-EFR AMR EVRC-QCELP G727 ILBC EVRC-B AMR-WB G722 EG711 MS RTA NB MS RTA WB SILK_NB SILK_WB SPEEX NB SPEEX WB OPUS NB OPUS WB ;QOE features: VoiceQualityMonitoring MediaEnhancement ;DATA features: ;Control Protocols: MSFT FEU=100 TestCall=100 MGCP SIP SASasurvivability SBC=50 ;Default features: ;Coders: G711 G726;

;------  HW components------
;
; Slot # : Module type : # of ports
;-----------------------------------------------
;  1 : FALC56 : 1
;  2 : FALC56 : 1
;  3 : FXS : 4
;-----------------------------------------------

[SYSTEM Params]
SyslogServerIP = 172.17.240.100
EnableSyslog = 1
DebugRecordingDestIP = 10.31.2.47
VpFileLastUpdateTime is hidden but has non-default value
TR069ACSPASSWORD = '$1$gQ=='
TR069CONNECTIONREQUESTPASSWORD = '$1$gQ=='
NTFServerIP = '0.0.0.0'
AUPDNETWORKSOURCE is hidden but has non-default value
LastConfigChangeTime is hidden but has non-default value
```
X-UM Connector

[BSP Params]

PCMLawSelect = 3
UdpPortSpacing = 10
EnterCpuOverloadPercent = 99
ExitCpuOverloadPercent = 95

[Analog Params]

[ControlProtocols Params]

AdminStateLockControl = 0

[MGCP Params]

[MEGACO Params]

[FSTN Params]

[SS7 Params]

[Voice Engine Params]

CallProgressTonesFilename = 'usa_tones_13.dat'

[WEB Params]

LogoWidth = '145'
HTTPSCipherString = 'RC4:EXP'

[SIP Params]

PLAYRBTONE2IP = 1
ISREGISTERNEEDED = 1
GWDEBUGLEVEL = 5
ENABLEEARLYMEDIA = 1
TCPLOCALSSIPPORT = 5067
ENABLEUSERINFOUSAGE = 1
USERINFOFILENAME = 'UserInfo-Numbers.txt'
ENABLESBCAPPLICATION = 1
MSLDAPPRIIMARYKEY = 'telephoneNumber'
TESTCALLID = '1013'
TESTCALLDTMFSTRING = '11'
ENERGYDETECTORCMD = 587202560
ANSWERDETECTORCMD = 10486144
; GWAPPCONFIGURATIONVERSION is hidden but has non-default value

[IPsec Params]

[SNMP Params]

[Physical Ports Table]

FORMAT PhysicalPortsTable_Index = PhysicalPortsTable_Port,
PhysicalPortsTable_Mode, PhysicalPortsTable_SpeedDuplex,
PhysicalPortsTable_PortDescription,
PhysicalPortsTable_GroupMember, PhysicalPortsTable_GroupStatus;
PhysicalPortsTable 0 = "GE_4_1", 1, 4, "User Port #0", "GROUP_1", "Active";
PhysicalPortsTable 1 = "GE_4_2", 1, 4, "User Port #1", "GROUP_1", "Redundant";
PhysicalPortsTable 2 = "GE_4_3", 1, 4, "User Port #2", "GROUP_2", "Active";
PhysicalPortsTable 3 = "GE_4_4", 1, 4, "User Port #3", "GROUP_2", "Redundant";

[Ether Group Table]

FORMAT EtherGroupTable_Index = EtherGroupTable_Group,
EtherGroupTable_Mode, EtherGroupTable_Member1,
EtherGroupTable_Member2;
EtherGroupTable 0 = "GROUP_1", 2, "GE_4_1", "GE_4_2";
EtherGroupTable 1 = "GROUP_2", 2, "GE_4_3", "GE_4_4";
EtherGroupTable 2 = "GROUP_3", 0, "", "";
EtherGroupTable 3 = "GROUP_4", 0, "", "";

[Device Table]

FORMAT DeviceTable_Index = DeviceTable_VlanID,
DeviceTable_UnderlyingInterface, DeviceTable_DeviceName,
DeviceTable_Tagging, DeviceTable_MTU;
DeviceTable 0 = 1, "GROUP_1", "vlan 1", 0, 1500;
DeviceTable 1 = 180, "GROUP_1", "vlan 2", 1, 1500;

[DeviceTable]

[InterfaceTable]

FORMAT InterfaceTable_Index = InterfaceTable_ApplicationTypes, InterfaceTable_InterfaceMode, InterfaceTable_IPAddress, InterfaceTable_PrefixLength, InterfaceTable_Gateway, InterfaceTable_InterfaceName, InterfaceTable_PrimaryDNSServerIPAddress, InterfaceTable_SecondaryDNSServerIPAddress, InterfaceTable_UnderlyingDevice;
InterfaceTable 0 = 6, 10, 172.17.240.102, 28, 172.17.240.97, "O+M+C", 0.0.0.0, 0.0.0.0, "vlan 1";
InterfaceTable 1 = 5, 10, 195.189.192.90, 28, 195.189.192.81, "DMZ", 0.0.0.0, 0.0.0.0, "vlan 2";

[InterfaceTable]

[WebUsers]

WebUsers 0 = "Admin", "1dUJFFEBPTE5PSXiG47jhure3seHu67y4v+y/7voK96TwsK0m+q Gur6ip+/qUw8 TCwJCfkaJjLm8jOmcybiNeE0dc=", 1, 0, 2, -1, 15, 60, 200, "08a41bffe130c4219ea6b7597801f572", "";
WebUsers 1 = "User", "1fRtOSOS4u+bg5+S3uu+y+ys7y+77ajaokj8PDwo6+qc675/62qxMKbxpoOQn5Gdy5 /NLJ2aloKD040EgYeDgYuL39k=", 1, 0, 2, -1, 15, 60, 50, "2a9ccee31b8ac674d6c92103c21916281", "";

[WebUsers]

[TLSContexts]

FORMAT TLSContexts_Index = TLSContexts_Name, TLSContexts_TLSVersion, TLSContexts_DTLSVersion, TLSContexts_ServerCipherString, TLSContexts_ClientCipherString, TLSContexts.RequireStrictCert, TLSContexts_OcspEnable, TLSContexts_OcspServerPrimary, TLSContexts_OcspServerSecondary, TLSContexts_OcspServerPort, TLSContexts_OcspDefaultResponse, TLSContexts_DHKeySize;
TLSContexts 0 = "default", 0, 0, "RC4:AES128", "DEFAULT", 0, 0, 0.0.0.0, 0.0.0.0, 2560, 0, 1024;

[TLSContexts]
[AudioCodersGroups]

FORMAT AudioCodersGroups_Index = AudioCodersGroups_Name;
AudioCodersGroups 0 = "AudioCodersGroups_0";

[\AudioCodersGroups]

[IpProfile]

FORMAT IpProfile_Index = IpProfile_ProfileName,
IpProfile_IpPreference, IpProfile_CodersGroupName,
IpProfile_IsFaxUsed, IpProfile_JitterBufMinDelay,
IpProfile_JitterBufOptFactor, IpProfile_IPDiffServ,
IpProfile_CNGmode, IpProfile_VxxTransportType, IpProfile_NSEMode,
IpProfile_IsDTMFUsed, IpProfile_PlayRBTone2IP,
IpProfile_EnableEarlyMedia, IpProfile_PROGRESSIndicator2IP,
IpProfile_EnableEchoCanceller, IpProfile_CopyDest2RedirectNumber,
IpProfile_MediaSecurityBehaviour, IpProfile_CallLimit,
IpProfile_DisconnectOnBrokenConnection,
IpProfile_FirstTxDTmfOption, IpProfile_SecondTxDTmfOption,
IpProfile_RxDTMFOption, IpProfile_EnableHold, IpProfile_InputGain,
IpProfile_VoiceVolume, IpProfile_AddIEInSetup,
IpProfile_SBCExtensionCodersGroupName,
IpProfile_MediaIPVersionPreference, IpProfile_TranscodingMode,
IpProfile_SBCAllowedMediaTypes,
IpProfile_SBCAllowedAudioCodersGroupName,
IpProfile_SBCAllowedVideoCodersGroupName,
IpProfile_SBCAllowedCodersMode,
IpProfile_SBCMediaSecurityBehaviour, IpProfile_SBCRFC2833Behavior,
IpProfile_SBCAlternativeDTMFMethod, IpProfile_SBCAssertIdentity,
IpProfile_AMDMaxGreetingTime, IpProfile_AMDMaxPostSilenceGreetingTime,
IpProfile_SBCHistoryInfoMode, IpProfile_SBCFaxCodersGroupName,
IpProfile_SBCFaxBehavior, IpProfile_SBCFaxOfferMode,
IpProfile_SBCFaxAnswerMode, IpProfile_SBCPrackMode,
IpProfile_SBSessionExpiresMode, IpProfile_SBCRemoteUpdateSupport,
IpProfile_SBCRemoteReinviteSupport,
IpProfile_SBCRemoteDelayedOfferSupport,
IpProfile_SBCRemoteReferBehavior, IpProfile_SBCRemote3xxBehavior,
IpProfile_SBCRemote18xSupport,
IpProfile_SBCRemoteEarlyMediaResponseType,
IpProfile_SBCRemoteEarlyMediaSupport,
IpProfile_EnableSymmetricMKI, IpProfile_MKISize,
IpProfile_SBCEnforceMKISize, IpProfile_SBCRemoteEarlyMediaRTP,
IpProfile_SBCRemoteSupportsRFC3960,
IpProfile_SBCRemoteCanPlayRingback, IpProfile_EnableEarly183,
IpProfile_EarlyAnswerTimeout, IpProfile_SBC2833DTMFPayloadType,
IpProfile_SBCUserRegistrationTime,
IpProfile_ResetSRTPStateUponRekey, IpProfile_AmdMode,
IpProfile_SBCReliableHeldToneSource, IpProfile_GenerateSRTPKeys,
IpProfile_SBCPlayHeldTone, IpProfile_SBCRemoteHoldFormat,
IpProfile_SBCRemoteReplacesBehavior, IpProfile_SBCSDPtimeAnswer,
IpProfile_SBCPreferredPTime, IpProfile_SBCUseSilenceSupp,
IpProfile_SBCRTPRedundancyBehavior,
IpProfile_SBCPlayRBTtoTransferee, IpProfile_SBCRTCPMode,
IpProfile_SBCJitterCompensation,
IpProfile_SBCRemoteRenegotiateOnFaxDetection,
IpProfile_JitterBufMaxDelay,
IpProfile_SBCUserBehindUdpNATRegistrationTime,
IpProfile_SBCUserBehindTcpNATRegistrationTime,
IpProfile_SBCSDPHandleRTCPAttribute,
IpProfile_SBCRemoveCryptoLifetimeInSDP, IpProfile_SBCIceMode,
IpProfile_SBCMaxCallDuration, IpProfile_SBCGenerateRTP,
IpProfile_SBCISUPBodyHandling, IpProfile_SBCISUPVariant,
IpProfile_SBCVoiceQualityEnhancement, IpProfile_SBCMaxOpusBW,
IpProfile_LocalRingbackTone, IpProfile_LocalHeldTone;
IpProfile 1 = "CloudBond", 1, "AudioCodersGroups_0", 0, 10, 10,
46, 40, 0, 0, 2, 0, 0, 0, 0, -1, 1, 0, -1, 1, 4, -1, 1, 1, 0,
0, "", ",", 0, 0, "", ",", ",", 0, 0, 0, 0, 0, 8, 300, 400, 0, 0,
0, ",", 0, 0, 1, 3, 0, 1, 1, 1, 3, 2, 1, 0, 1, 0, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0, 0, 0, 1, 1, 0, 0, 300, -1, -1,
0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, "", 0, 0, 0, 0, 0,
0, 0, 0, -1, -1;

[\IpProfile]

[CpMediaRealm]

FORMAT CpMediaRealm_Index = CpMediaRealm_MediaRealmName,
CpMediaRealm_IPv4IF, CpMediaRealm_IPv6IF,
CpMediaRealm_PortRangeStart, CpMediaRealm_MediaSessionLeg,
CpMediaRealm_PortRangeEnd, CpMediaRealm_IsDefault,
CpMediaRealm_QoeProfile, CpMediaRealm_BWProfile,
CpMediaRealm_TopologyLocation;
CpMediaRealm 0 = "DefaultRealm", "O+M+C", ",", 50000, 999, 59989,
1, ",", ",", 0;

[\CpMediaRealm]

[SBCRoutingPolicy]

FORMAT SBCRoutingPolicy_Index = SBCRoutingPolicy_Name,
SBCRoutingPolicy_LCREnable, SBCRoutingPolicy_LCRAverageCallLength,
SBCRoutingPolicy_LCDefaultCost,
SBCRoutingPolicy_LdapServerGroupName;
SBCRoutingPolicy 0 = "Default_SBCRoutingPolicy", 0, 0, 1, ",";
[SBCRoutingPolicy]

[SRD]

FORMAT SRD_Index = SRD_Name, SRD_BlockUnRegUsers, SRD_MaxNumOfRegUsers, SRD_EnableUnAuthenticatedRegistrations, SRD_SharingPolicy, SRD_UsedByRoutingServer, SRD_SBCOperationMode, SRD_SBCRoutingPolicyName, SRD_SBCDialPlanName;

SRD 0 = "DefaultSRD", 1, -1, 1, 0, 0, 0, "Default_SBCRoutingPolicy", "";

[MessagePolicy]

MessagePolicy 0 = "Malicious Signature DB Protection", -1, -1, -1, -1, 1, "", 0, "", 0, 1;

[SIPInterface]

FORMAT SIPInterface_Index = SIPInterface_InterfaceName, SIPInterface_NetworkInterface, SIPInterface_ApplicationType, SIPInterface_UDPPort, SIPInterface_TCPPort, SIPInterface_TLSPort, SIPInterface_SRDName, SIPInterface_MessagePolicyName, SIPInterface_TLSContext, SIPInterface_TLSMutualAuthentication, SIPInterface_TCPKeepaliveEnable, SIPInterface_ClassificationFailureResponseType, SIPInterface_PreClassificationManSet, SIPInterface_EncapsulatingProtocol, SIPInterface_MediaRealm, SIPInterface_SBCDirectMedia, SIPInterface_BlockUnRegUsers, SIPInterface_MaxNumOfRegUsers, SIPInterface_EnableUnAuthenticatedRegistrations, SIPInterface_UsedByRoutingServer, SIPInterface_TopologyLocation, SIPInterface_PreParsingManSetName;

SIPInterface 0 = "CloudBond", "O+M+C", 2, 5060, 5068, 5067, "DefaultSRD", "", "default", -1, 0, 500, 2, 0, "DefaultRealm", 0, -1, -1, 0, 0, "";

[ProxySet]
FORMAT ProxySet_Index = ProxySet_ProxyName,
ProxySet_EnableProxyKeepAlive, ProxySet_ProxyKeepAliveTime,
ProxySet_LoadBalancingMethod, ProxySet_IsProxyHotSwap,
ProxySet_SRDName, ProxySet_ClassificationInput,
ProxySet_TLSContextName, ProxySet_ProxyRedundancyMode,
ProxySet_DNSResolveMethod, ProxySet_ProxyFailureResp,
ProxySet_GWIPv4SIPInterfaceName, ProxySet_SBCIPv4SIPInterfaceName,
ProxySet_GWIPv6SIPInterfaceName, ProxySet_SBCIPv6SIPInterfaceName,
ProxySet_MinActiveServersLB, ProxySet_SuccessDetectionRetries,
ProxySet_SuccessDetectionInterval,
ProxySet_FailureDetectionRetransmissions;
ProxySet 1 = "CloudBond", 1, 360, 0, 0, "DefaultSRD", 0, '', -1, -1, '', '', "CloudBond", '', '', 1, 1, 10, -1;
ProxySet 2 = "xUM", 1, 360, 0, 0, "DefaultSRD", 0, '', -1, -1, '', '', "CloudBond", '', '', 1, 1, 10, -1;
ProxySet 3 = "IP-PBX", 0, 60, 0, 0, "DefaultSRD", 0, '', -1, -1, '', '', "CloudBond", '', '', 1, 1, 10, -1;

[\ProxySet]

[IGroup]

FORMAT IGroup_Index = IGroup_Type, IGroup_Name,
IGroup_ProxySetName, IGroup_SIPGroupName, IGroup_ContactUser,
IGroup_ReRoutingMode, IGroup_AlwaysUseRouteTable,
IGroup_SRDName, IGroup_MediaRealm, IGroup_ClassifyByProxySet,
IGroup_ProfileName, IGroup_MaxNumOfRegUsers,
IGroup_InboundManSet, IGroup_OutboundManSet,
IGroup_RegistrationMode, IGroup_AuthenticationMode,
IGroup_MethodList, IGroup_EnableSBCClientForking,
IGroup_SourceUriInput, IGroup_DestUriInput, IGroup_ContactName,
IGroup_Username, IGroup_Password, IGroup_UUIFormat,
IGroup_QOEProfile, IGroup_BWProfile,
IGroup_AlwaysUseSourceAddr, IGroup_MsgManUserDef1,
IGroup_MsgManUserDef2, IGroup_SIPConnect, IGroup_SBCPSAPMode,
IGroup_DTLSContext, IGroup_CreatedByRoutingServer,
IGroup_UsedByRoutingServer, IGroup_SBCOperationMode,
IGroup_SBCRouteUsingRequestURIPort,
IGroup_SBCKeepOriginalCallID, IGroup_TopologyLocation,
IGroup_SBCDialPlanName, IGroup_CallSetupRulesSetId,
IGroup_Tags, IGroup_SBCUserStickiness;
IGroup 0 = 2, "Default", '', '', '', -1, 0, "DefaultSRD", '', 1, '', -1, -1, 0, 0, '', 0, -1, -1, '', '', "1gQ==", 0, '', '', 0, '', '', 0, 0, '', 0, 0, '', -1, '', -1, '', 0;
IGroup 1 = 0, "CloudBond", "CloudBond", '', '', -1, 0, "DefaultSRD", "DefaultRealm", -1, -1, 0, 0, '', 0, -1, -1, '', '', "1gQ==", 0, '', '', 0, '', '', 0, 0, '', 0, 0, '', -1, '', -1, '', 0;
IGroup 2 = 0, "xUM", "xUM", '', '', -1, 0, "DefaultSRD", "DefaultRealm", 1, '', -1, -1, 2, 0, 0, '', 0, -1, -1, '', '', "1gQ==", 0, '', '', 0, '', '', 0, 0, '', 0, 0, '', -1, '', -1, '', 0;
IGroup 3 = 0, "IP-PBX", "IP-PBX", '', '', -1, 0, "DefaultSRD", "DefaultRealm", 1, "CloudBond", -1, -1, 1, 0, 0, '', 0, -1, -1, '', '', "1gQ==", 0, '', '', 0, '', '', 0, 0, '', 0, 0, '', -1, '', -1, '', 0;
[\IPGroup]

[ProxyIp]
FORMAT ProxyIp_Index = ProxyIp_ProxySetId, ProxyIp_ProxyIpIndex, ProxyIp_IpAddress, ProxyIp_TransportType;
ProxyIp 0 = "1", 0, "172.17.240.101:5060", 1;
ProxyIp 1 = "2", 0, "172.17.240.107:5070", 1;
ProxyIp 2 = "3", 0, "10.13.2.16", 0;
ProxyIp 3 = "3", 1, "172.17.240.100", 0;
ProxyIp 4 = "3", 2, "10.7.2.55", 0;
ProxyIp 5 = "3", 3, "172.17.240.106:5060", 0;
ProxyIp 6 = "3", 4, "10.16.2.73", 0;

[\ProxyIp]

[IP2IPRouting]
FORMAT IP2IPRouting_Index = IP2IPRouting_RouteName, IP2IPRouting_RoutingPolicyName, IP2IPRouting_SrcIPGroupName, IP2IPRouting_SrcUsernamePrefix, IP2IPRouting_SrcHost, IP2IPRouting_DestUsernamePrefix, IP2IPRouting_DestHost, IP2IPRouting_RequestType, IP2IPRouting_MessageConditionName, IP2IPRouting_ReRouteIPGroupName, IP2IPRouting_Trigger, IP2IPRouting_CallSetupRulesSetId, IP2IPRouting_DestType, IP2IPRouting_DestIPGroupName, IP2IPRouting_DestSIPInterfaceName, IP2IPRouting_DestAddress, IP2IPRouting_DestPort, IP2IPRouting_DestTransportType, IP2IPRouting_AltRouteOptions, IP2IPRouting_GroupPolicy, IP2IPRouting_CostGroup, IP2IPRouting_DestTags, IP2IPRouting_SrcTags, IP2IPRouting_InternalAction;
IP2IPRouting 0 = "option Termination", "Default_SBCRoutingPolicy", "Any", "**", "**", "**", 6, "", "Any", 0, -1, 1, "", "", "internal", 0, -1, 0, "", "", "", "", "default", ";
IP2IPRouting 2 = "send subscribe to XUM", "Default_SBCRoutingPolicy", "IP-PBX", "**", "**", "**", "**", 3, "", "Any", 0, -1, 0, "xUM", "", "", 0, -1, 0, "", "", "", "", "default", ";
IP2IPRouting 3 = "VMLogin", "Default_SBCRoutingPolicy", "IP-PBX", "**", "**", "**", "7777", "**", 0, "", "Any", 0, -1, 0, "xUM", "", "", 0, -1, 0, "", "", "", "", "default", ";
IP2IPRouting 4 = "IP-PBX to CloudBond", "Default_SBCRoutingPolicy", "IP-PBX", "**", "**", "**", "**", 0, "", "Any", 0, -1, 0, "CloudBond", "", "", 0, -1, 0, "", "", "", "", "default", ";
IP2IPRouting 5 = "Calls from CloudBond and XUM to IP-PBX", "Default_SBCRoutingPolicy", "Any", "**", "**", "**", "**", 0, "", "Any", 0, -1, 0, "IP-PBX", "", "", 0, -1, 0, "", "", "", "", "default", ";

[\IP2IPRouting]
[IPOutboundManipulation]

FORMAT IPOutboundManipulation_Index =
IPOutboundManipulation_ManipulationName,
IPOutboundManipulation_RoutingPolicyName,
IPOutboundManipulation_IsAdditionalManipulation,
IPOutboundManipulation_SrcIPGroupName,
IPOutboundManipulation_DestIPGroupName,
IPOutboundManipulation_SrcUsernamePrefix,
IPOutboundManipulation_SrcHost,
IPOutboundManipulation_DestUsernamePrefix,
IPOutboundManipulation_DestHost,
IPOutboundManipulation_CallingNamePrefix,
IPOutboundManipulation_MessageConditionName,
IPOutboundManipulation_RequestType,
IPOutboundManipulation_ReRouteIPGroupName,
IPOutboundManipulation_Trigger,
IPOutboundManipulation_ManipulatedURI,
IPOutboundManipulation_RemoveFromLeft,
IPOutboundManipulation_RemoveFromRight,
IPOutboundManipulation_LeaveFromRight,
IPOutboundManipulation_Prefix2Add,
IPOutboundManipulation_Suffix2Add,
IPOutboundManipulation_PrivacyRestrictionMode,
IPOutboundManipulation_DestTags, IPOutboundManipulation_SrcTags;

IPOutboundManipulation 1 = "Check +", "Default_SBCRoutingPolicy",
0, "Any", "CloudBond", "*", "*", "*", "*", "*", 0, "Any", 0,
1, 0, 0, 255, "", "", 0, "", "");

IPOutboundManipulation 2 = "Full Number",
"Default_SBCRoutingPolicy", 0, "IP-PBX", "CloudBond", "*", "*",
"10", "*", "*", "*", 0, "Any", 0, 1, 0, 0, 255, "+9723976", "", 0,
"", "");

IPOutboundManipulation 3 = "SPS to MP-11x",
"Default_SBCRoutingPolicy", 0, "xUM", "IP-PBX", "*", "*",
"972397610", "*", "*", "*", 0, "Any", 0, 1, 7, 0, 255, "+", "");

IPOutboundManipulation 4 = "Add +", "Default_SBCRoutingPolicy", 0,
"Any", "CloudBond", "*", "*", "*", "*", "*", "*", "*", "*", 0, "Any", 0, 1,
0, 0, 255, "+", "", 0, "", "");

[\IPOutboundManipulation]

[MessageManipulations]

FORMAT MessageManipulations_Index =
MessageManipulations_ManipulationName,
MessageManipulations_ManSetID, MessageManipulations_MessageType,
MessageManipulations_Condition,
MessageManipulations_ActionSubject,
MessageManipulations_ActionType, MessageManipulations_ActionValue,
MessageManipulations_RowRole;

MessageManipulations 0 = "NOTIFY", 1, "NOTIFY", "body.mwi regex
(.*)\(sip:)(.*)\.(41)(\S+)\", "body.mwi", 2, "$1+$2+$4+$5+$6", 0;
MessageManipulations 1 = "", 3, "info.response", "",
"header.cseq.type", 2, "'SUBSCRIBE'", 0;
MessageManipulations 2 = "Subscribe to INFO", 4,
"subscribe.request", "", "header.request-uri.methodtype", 2,
"'12'", 0;
MessageManipulations 3 = "", 4, "", "", "header.cseq.type", 2,
"'INFO'", 1;
[\MessageManipulations]

[GwRoutingPolicy]

FORMAT GwRoutingPolicy_Index = GwRoutingPolicy_Name,
GwRoutingPolicy_LCREnable, GwRoutingPolicy_LCRAverageCallLength,
GwRoutingPolicy_LCRDefaultCost,
GwRoutingPolicy_LdapServerGroupName;
GwRoutingPolicy 0 = "GwRoutingPolicy", 0, 0, 1, "";
[\GwRoutingPolicy]

[LoggingFilters]

FORMAT LoggingFilters_Index = LoggingFilters_FilterType,
LoggingFilters_Value, LoggingFilters_LogDestination,
LoggingFilters_CaptureType, LoggingFilters_Mode;
LoggingFilters 0 = 1, "", 0, 1, 1;
LoggingFilters 1 = 1, "", 1, 1, 1;
[\LoggingFilters]

[ResourcePriorityNetworkDomains]

FORMAT ResourcePriorityNetworkDomains_Index =
ResourcePriorityNetworkDomains_Name,
ResourcePriorityNetworkDomains_Ip2TelInterworking;
ResourcePriorityNetworkDomains 1 = "dsn", 0;
ResourcePriorityNetworkDomains 2 = "dod", 0;
ResourcePriorityNetworkDomains 3 = "drsn", 0;
ResourcePriorityNetworkDomains 5 = "uc", 1;
ResourcePriorityNetworkDomains 7 = "cuc", 0;
[\ResourcePriorityNetworkDomains]

[MaliciousSignatureDB]

FORMAT MaliciousSignatureDB_Index = MaliciousSignatureDB_Name,
MaliciousSignatureDB_Pattern;
MaliciousSignatureDB 0 = "SIPVicious", "Header.User-Agent.content
prefix 'friendly-scanner'";
MaliciousSignatureDB 1 = "SIPScan", "Header.User-Agent.content prefix 'sip-scan'";
MaliciousSignatureDB 2 = "Smap", "Header.User-Agent.content prefix 'smap'";
MaliciousSignatureDB 3 = "Sipsak", "Header.User-Agent.content prefix 'sipsak'";
MaliciousSignatureDB 4 = "Sipcli", "Header.User-Agent.content prefix 'sipcli'";
MaliciousSignatureDB 5 = "Sivus", "Header.User-Agent.content prefix 'SIVuS'";
MaliciousSignatureDB 6 = "Gulp", "Header.User-Agent.content prefix 'Gulp'";
MaliciousSignatureDB 7 = "Sipv", "Header.User-Agent.content prefix 'sipv'";
MaliciousSignatureDB 8 = "Sundayddr Worm", "Header.User-Agent.content prefix 'sundayddr'";
MaliciousSignatureDB 9 = "VaxIPUserAgent", "Header.User-Agent.content prefix 'VaxIPUserAgent'";
MaliciousSignatureDB 10 = "VaxSIPUserAgent", "Header.User-Agent.content prefix 'VaxSIPUserAgent'";
MaliciousSignatureDB 11 = "SipArmyKnife", "Header.User-Agent.content prefix 'siparmyknife'";

[\MaliciousSignatureDB]

[AudioCoders]

FORMAT AudioCoders_Index = AudioCoders_AudioCodersGroupId,
AudioCoders_AudioCodersIndex, AudioCoders_Name, AudioCoders_pTime,
AudioCoders_rate, AudioCoders_PayloadType, AudioCoders_Sce,
AudioCoders_CoderSpecific;
AudioCoders 0 = "AudioCodersGroups_0", 0, 1, 2, 90, -1, 0, "";
AudioCoders 4 = "AudioCodersGroups_0", 1, 2, 2, 90, -1, 0, "";

[\AudioCoders]
This page is intentionally left blank.