Reference Guide

AudioCodes Voice Recognition Engine

AC Voca API Guide

for Windows

Version 1.0

O audiocodes 3 . ACVoca

powered by AudioCodes







Reference Guide Contents

Table of Contents

R 1314 ¢ Yo [¥ Tt 4 1o ] o FROU RNt 7
P N CT=1 4 a1 V=43 - T o =T IS 9
2.0 PUIPOSE .ttt ettt ettt ee et e e ettt e e e et e e e e e tta e e e e e aaaeeeeaaaaeeeeaaaaeeeaanraeeeeanaeeeeennraaeaans 9
2.2 Terms and DefinitioNS.......cuuiei it e e e eara e 9
Y o I o1 =TSPt 11
1 J0 I VA O o I T =SSR 11
3.2 NSC ASR APLFIlBS ettt ettt e e et e e e e e aa e e e e eenaaeeeeennaeeas 11
4 Function DefinitioNns .......cciiieeiiiiiiiiiiiiiiniiicn s resa s s sssns e s s ssnnssessannnsanns 13
g T N Y G 2 = PR 13
4.1.1 |Initialization/Termination FUNCLIONS ......cccvviiiiiieieiieiiieecceeeee e 13
st 0t O AN Y G 1o T S SSPRR 13

4.1.1.2 NSC Version _Get ...cuuuuieieii i e e e e eeaens 15

4.1.1.3 NSC Terminate ... e e eeeeeaees 17

4.1.2 Server Management FUNCLIONS........ooviiiiiiiie e 18
4,1.2.1 NSC_Server_FiNd ....ieeeiiiiieieeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeseeeressssssesseees 18

4,1.2.2 NSC_Server_Add......eeeeieiiieieeeieieieieeeeeeeeeeeeeeeeeeeeeeeeeeereeereeseseeees 20

4.1.2.3 NSC_Server_REMOVE ....ccceiieieeiiiiiiieeeeeeeeevtciie e e e e e e eevaanae e e e eaeeeenns 22

4.1.2.4 NSC_Server INfOGEL .......covvviiireeiiee e 24

4.1.3 Event Management FUNCLIONS.......cooeviiiiiieee e 26
4.1.3.1 NSC _EVENT _Get.uiiiiiiiiiiieiee et e e e et e e e e e eeaens 26

4.1.3.2 NSC _EVENTt PUL ..o e e 28

4.1.4 Resource Management FUNCLIONS ........uuieeeeiiiiieiicceee e 29
4.1.4.1 NSC _ReESOUICE GeL..ciiiuuiiiiiieieeeiiiiiie e e e eeeeevtcese e e e e e e evare e e e eeeeeanns 29

4.1.4.2 NSC _RESOUICE FrEe..uuuuuiiieiieieeiiiiiiiee e e eeeeevtceie e e e e e e eevaarae e e e eeeeeenns 31

4.1.4.3 NSC_ResoUrce_ADOI.....ccceiiiiiiiiiiriiie et 32

4.1.4.4 NSC_Resource_INfOGEet.......cccuviiiiiiiriiiieiiiiiee e 34

4.1.5 Audio Channel Management FUNCLIONS .......ccovviieeiiiiiieeiiiiiee e, 36
4.1.5.1 NSC_Resource_AudioChannelSet........ccccevuireiniiieeiiniiieeeniiieeeenns 37

4.1.5.2 NSC_Resource_AudioMainStream .......cccccccveevriiveeesniieeessiineeennns 40

4.1.5.3 NSC_Resource_AudioPromptStream ........cccccevvvvveeeiniveeesriiveeennns 42

4.1.6 RTP Management FUNCTIONS ....ccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 44
4.1.6.1 NSC_RTPSESSION_OPEN..ciiiiiiiiiiiiiiiiiiiiiiiiiiitieteeeeeeeeeeeeeeeeeeeeee e eeeee 44

4.1.6.2 NSC_RTPSESSION_ClOSE.....uviiiiiiiiiieiiiiiee e ciieeessieee e esieee e s eieee e 46

4.1.6.3 NSC_Resource_RTPChannel_Set......ccccccvviiiiiiiiiieeiiniiieeseiieeeene a7

4.1.6.4 NSC_Resource_RTPChannel_Reset ......ccccccuveeirviieeiiniiieeiniieeeenns 48

A.1.7 NSC AP STrUCTUIES e e e e e e e e e e eaaaes 49
4.1.7.1 NSC DATA ST .ottt e e e e e rrree e e e e e e e e nnares 49

4.1.7.2 NSC_EVENT _DATA ST oottt e e e 49

4.1.7.3 NSC_HEADER _ST..etttiiiiiii ettt e et e e e e e e eeree e e e e s e e 50

4.1.7.4 NSC_SERVER_INFO _ST...ciiiiieiee et e e e e 50

4.1.7.5 NSC_SERVER_INFO_LIST ST ..uttiiiiiieiieiiireeee e e 51

Version 1.0 3 AC Voca for Windows



QC audiocodes

AC Voca for Windows

4.1.7.6 NSC_RESOURCE_INFO _ST..ciiiiiiiiieieieieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 51
A4.1.7.7 NSC_PARAM ST .ooiiiiiiiiieieieieieeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeessseseeseeesesesseees 52
4.1.7.8 NSC_PARAM _LIST ST coririiieiiieieieeeeeeeeeeeeeeeeeeeee e e e e e ee e e s eeeeeeeeseeeeeeees 52
4.1.7.9 NSC_RTP_SESSION_ST .cotiiiiiiiiiiieieieiieeieeeeeeeeeeeee e eeeeeeesseeeeseeeseeeeeeees 53

A.1.8  NSC AP TYPES oottt e e e e e e e e e e e e e e e e ae e 54
4.1.9 NSCAPIEVENT COUES ...unuiiiiiiiiiee ettt ettt e e areae e e e e e e e e anenes 54
4.1.10 NSC AP CONStANTS. .uuuiiii ittt e e e e e e e e e e e eaaaaaaaes 55
4.1.11 NSC APIErrOr COUBS.. .o iiiiiiiieiee e ettt e e e ee et e e e e e e area e e e e e e e e e e aneees 57
A A O N 2 Y o SR 58
4.2.1 |Initialization/Termination FUNCLIONS ......cccvviiiiiieieiieiiiee e 58
e I A N Y @7 Y 3 S [ 1 58
4.2.1.2 NSCASR_Version_Get....cccccceriiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeee e 59
4.2.1.3 NSCASR_Terminate ......ccceeviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 60

4.2.2 RecOogNItioN FUNCLIONS..ccoiieieee e 61
4.2.2.1 NSCASR_RECOZNIZE ..cceviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee et 61
4.2.2.2 NSCASR_Recognize_TimersStart ......cccccvvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee. 63
4.2.2.3 NSCASR_Recognize_ResultsGet........ccccerrriiiieiniiieeeiniiiee e 65

4.2.3 Grammar Management FUNCLIONS.....ccooeeieeeiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 67
4.2.3.1 NSCASR_Grammar_Load .....ccccccuveeiiriuiieeiiiiieeesieeeeesiieee s eieee e 67
4.2.3.2 NSCASR_Grammar_AcCtivate.....ccccceeeeiiiiiieeiccie e, 69
4.2.3.3 NSCASR_Grammar_DeActivate.......cccevevviiiiiieeeeeeeeeecciee e, 71
4.2.3.4 NSCASR_Grammar_AcCtiveGet ......cceeeeiieiiiiiiciiee e, 73
4.2.3.5 NSCASR_Grammar_Vocabularyload........cccccccceevvvcnrreereeeeeniennnnen, 75
4.2.3.6 NSCASR_Grammar_RemMOVE.........cceieiiieieieeiiieieeeeeeeeeveicie e e e e eeeenans 77

4.2.4 Parameters Management FUNCLIONS .......coeeiiiiiiiiiiiiieeee e, 79
4.2.4.1 NSCASR _Parameter Set.....ccoiiiiiieiiieeeeeeccie e eeeans 79
4.2.4.2 NSCASR _Parameter Get ......cooeviiiiiieiiieeeeeeceie e eeeeans 81

V0 T o= = [ oY= T o Vol ] o 3 83
4.2.5.1 NSCASR_Log WaveformPathSet.........ccovvvveerieiiiiiiiiirreeeeee e, 83
4.2.5.2 NSCASR_LOE INTOSET ....cciiiiitiiieiiee et 85

4.2.6 NSCASR AP STrUCTUIES e eeee et 87
4.2.6.1 NSCASR_ACQ_PARAMS ST iiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeseeeeeesessseees 87
4.2.6.2 NSCASR_RCG_PARAMS ST ..citiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeseeeeseeseeens 88
4.2.6.3 NSCASR_RCG_ITEM_ST..ciiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeesesssesseees 88
4.2.6.4 NSCASR_RCG_PHRASE ST ..coiiiiiiiieiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 89
4.2.6.5 NSCASR_RCG_RES ST ..oiiiiiiiiiiiiieieieieieieieeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeseeees 89
4.2.6.6 NSCASR_LOG _INFO _ST.coiiiiiiiiieieieieieieieieeeeeeeeeeeeeeeeeeeeseeeeeeeeseeeeseeees 90
4.2.6.7 NSCASR_GRAMMAR _LIST ST .otiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 91

4.2.7 NSCASR APl EVENt COUES...uutiiiieiiiiiitieiee e e e ettt e e eearereee e e e e e e annneas 91
4.2.8 NSCASR API CoNStants ..ociiiiiiiiiiiei ettt e e e e e 93
4.2.9 NSCASR APIEFrOr COUBS .uuvriiirieiiiiieiiiiieieeeeeeeeccirtieeeee e e e eeenareaeeseeeeeeeennnnens 94
A REFEIENCES ..cuuiieeiieiiiieeiirtieiertneereneerenetensesreasesesasesenssssenssssnnsssenssssensesesnsesenssssenssnnnn 97

Reference Guide

4 Document #: LTRT-13180



Reference Guide Notices

Notice

Information contained in this document is believed to be accurate and reliable at the time of
printing. However, due to ongoing product improvements and revisions, AudioCodes cannot
guarantee accuracy of printed material after the Date Published nor can it accept
responsibility for errors or omissions. Updates to this document can be downloaded from
https://www.audiocodes.com/library/technical-documents.

This document is subject to change without notice.

Date Published: February-06-2018

WEEE EU Directive

Pursuant to the WEEE EU Directive, electronic and electrical waste must not be
disposed of with unsorted waste. Please contact your local recycling authority for
disposal of this product.

Customer Support

For customer support, please contact your support representative or the
AudioCodes support team at support@acvoca.com.

Abbreviations and Terminology

Each abbreviation, unless widely used, is spelled out in full when first used.

Document Revision Record

LTRT Description

13180 Initial document release for Version 1.0.

Version 1.0 5 AC Voca for Windows


https://www.audiocodes.com/library/technical-documents
mailto:support@acvoca.com

QC audiocodes _
AC Voca for Windows

Related Documentation

Document Name
AC Voca Release Notes
AC Voca Administration Guide

AC Voca API Guide for iOS and Android

Documentation Feedback

AudioCodes continually strives to produce high quality documentation. If you have

any comments (suggestions or errors) regarding this document, please fill out the
Documentation Feedback form on our Web site at

http://online.audiocodes.com/documentation-feedback.

Reference Guide 6 Document #: LTRT-13180


http://online.audiocodes.com/documentation-feedback

Reference Guide 1. Introduction

1 Introduction

The AC Voca Software Developer Kit (SDK) for Windows is designed for software
developers and integrators, allowing the enhancement of any application with voice
recognition capabilities. This promotes easy access for application functionality
using natural voice commands.

Using an intuitive set of natural voice commands with high recognition accuracy
levels, alongside the AC Voca pure offline capability (as the voice-engine doesn’t
require any Internet connectivity in order to operate in real-time), users can enjoy
an innovative, friendly and simple user-experience, driving their application usage
by natural voice.

Version 1.0 7 AC Voca for Windows



QC audiocodes

AC Voca for Windows

This page is intentionally left blank.

Reference Guide 8 Document #: LTRT-13180



Reference Guide

2. Getting Started

2 Getting Started

2.1 Purpose

The NSC API Manual includes the definitions of all the functions and data structures
needed for interfacing with the NSCServer utility — a component of the NSC
SpeechBlade™ Server product. It is intended for application developers building
applications working with the NSCServer.

2.2 Terms and Definitions

The following basic terms are used in this manual:

Grammar

Vocabulary

Runtime-Vocabulary

Resource

Host

Barge-In

Defines the legal words or phrases to be recognized at a given
point in an application.

A list that defines the words that can be recognized.

A vocabulary defined in a grammar, and set at runtime (before
recognition).

A single independent implementation of the NSC Speecher/Spotter
speech recognizer, executing all functions defined in this API
manual; simply referred to as a Resource.

The hardware platform on which the voice-driven application
resides.

The ability to speak (and be recognized) while the system is playing
a prompt.

Version 1.0

9 AC Voca for Windows



QC audiocodes

AC Voca for Windows

This page is intentionally left blank.

Reference Guide 10 Document #: LTRT-13180



Reference Guide

3. API Files

3

API Files

The following API files are used.

3.1 NSC API Files
Library: nsc.dll, nsc.lib
Functions Header: nsc.h
Error Codes Header: nsc_err.h
3.2 NSC ASR API Files
In addition to the files mentioned in Section 3.1:
Functions Header: nscasr.h
Error Codes Header: nscasr_err.h
Version 1.0 11 AC Voca for Windows



QC audiocodes

AC Voca for Windows

This page is intentionally left blank.

Reference Guide 12 Document #: LTRT-13180



Reference Guide 4. Function Definitions

4 Function Definitions

The set of functions that are supported by the NSC APl are defined below.
References to definition of structures, types and constants are given throughout the
document.

4.1 NSC API

The following describes NSC API functions.
4.1.1 Initialization/Termination Functions

4.1.1.1 NSC_Init

Description
This function initializes the NSC API.

Syntax

NSC_ERR_TP  NSC_Init
(NSC_Callback _EventReport fncEventCal I1Back,
const char *pstrLogPathName,
const char *pstrLogFileName);

Input

FncEventCallBack  pefines the name of the application callback
function (see below).

pstrLogPathName Defines the pointer to a string that gives the path
where application (API) logs® will be saved.

pstrLogFileName Defines the pointer to a string that gives the name
of the application (API) log file.

Output
None

Return Values
NSC_ERR_TP (see Section 4.1.11).

The application logs are the logs that document all the API commands passed from the application to the
NSCServer and back through the NSC API (This log has no relation to recognition results).

Version 1.0 13 AC Voca for Windows



QC audiocodes

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
B This function must be called before using any other function in this API.

B The fncEventCallBack is used when the method for event handling is “call
back” (as explained in section 6.3.1 of NSC Speecher User’s Guide). When the
polling method is used, this parameter is set to NULL.

B If pstrlogPathName and pstrLogFileName are both set to NULL, the NSC
Speecher/Spotter will create a default log file named nsc.log, in the
application’s current directory.




4.1.1.2 NSC_Version_Get

Description

This function retrieves the current API version number.

Syntax
NSC_ERR_TP NSC_Version_Get
(char *pstrVersion,
unsigned short *pusSizeBytes);
Input
pstrVersion Defines an allocated string.
pusSizeByte Defines the allocated size of the string.
Output
pstrVersion Defines the string containing the APl version
number.
pusSizeByte Defines the actual size of the string returned.

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)

Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




QC audiocodes
AC Voca for Windows

Notes

The error message NSC_MORE_DATA will be returned if the size of the string is too
small to include the version number. The actual size required is returned in
pusSizeBytes and the string can be re-allocated in order to call the function again.

Reference Guide 16 Document #: LTRT-13180



4.1.1.3 NSC_Terminate

Description
This function terminates the connection between the APl and the application

Syntax
NSC_ERR_TP NSC_Terminate()

Input
None

Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)

Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
None




Q': OUdiOCOdeS AC Voca for Windows

4.1.2 Server Management Functions

4.1.2.1 NSC_Server_Find

Description
This function retrieves the server ID of an active NSCServer at the provided IP
address.
Syntax
NSC _ERR_TP NSC Server_ Find
(const NSC_HEADER_ST *pHeader,
const char *pstriP,
short *psServerlD);
Input

*pHeader Defines the pointer to NSC_HEADER_ST
which includes the flag for
synchronous/asynchronous operation and
additional data structure that can be used
for application purposes.

*pstriP Defines the string representing the IP
address that the server ID will be retrieved
from.

Output
*psServerlD Defines the unique ID of the server that was

found. '-1' is returned if no server was
found at the given IP address.

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Reference Guide 18 Document #: LTRT-13180



Supported Modes (Synchronous/Asynchronous)
Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
None




Q': OUdiOCOdeS AC Voca for Windows

4.1.2.2 NSC_Server_Add

Description

This functions adds a specific NSCServer found on the network to the application's
list (bank) of servers.

Syntax
NSC_ERR_TP NSC_Server_Add
(const NSC_HEADER_ST *pHeader,
const char *pstriP,
unsigned long ulPort,
long ITimeout,
short *psServerlD);
Input
*pHeader Defines the pointer to NSC_HEADER_ST which

includes the flag for synchronous/asynchronous
operation and additional data structure that can be
used for application purposes.

*pstriP Defines the IP address of the server being added to
the bank of available servers.

ulPort Defines the number of the socket, the server is
receiving API calls through.

ITimeout Defines the timeout in milliseconds to handshake
with the server.

Output

*psServerlD Defines the unique server ID.

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Reference Guide 20 Document #: LTRT-13180



Supported Modes (Synchronous/Asynchronous)
Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

The port number in ulPort is set according to the configuration of the NSCServer
port (Please refer to the NSCServer Configuration Manual).




Q': OUdiOCOdeS AC Voca for Windows

4.1.2.3 NSC_Server_Remove

Description
This functions removes a specific NSCServer from the application's list (bank) of
servers.
Syntax
NSC ERR TP NSC_Server_ Remove
(const NSC_HEADER_ST *pHeader,
short sServerlD,
long ITimeout;
Input
*pHeader Defines the pointer to NSC_HEADER_ST which
includes the flag for synchronous/asynchronous
operation and additional data structure that can be
used for application purposes.
sServerlD Defines the unique server ID.
ITimeout Defines the timeout in milliseconds for contacting
the server.
Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Reference Guide 22 Document #: LTRT-13180



Reference Guide 4. Function Definitions

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
None

Version 1.0 23 AC Voca for Windows



QC audiocodes

4.1.2.4 NSC_Server_InfoGet

Description

This function retrieves the information on NSCServer found on the application's
server list. It can also be used to retrieve a list of all the servers that are found on
the application's server list.

Syntax

NSC_ERR_TP NSC_Server_InfoGet
(const NSC_HEADER_ST *pHeader,
short sServerliD,

NSC_SERVER_INFO_LIST_ST *pServerinfo);

Input
*pHeader Defines the pointer to NSC_HEADER_ST which
includes the flag for synchronous/asynchronous
operation and additional data structure that can be
used for application purposes.
sServeriD Defines the unique server ID. To retrieve the full
server list this value should be '-1'.
*pServerlinfo Defines, in synchronous mode, a pointer to an
allocated NSC_SERVER_INFO_LIST_ST structure
(see Section 4.1.7.5 and notes below). In
asynchronous mode, this pointer can be NULL (see
notes below).
Output
*pServerlinfo In synchronous mode, this will be a pointer to the

list of available servers (see notes below).

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h




Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

B When calling this function synchronously, the server list will be returned in
the structure pointed to by *pServerinfo. The application will need to allocate
the structure before calling the function, and setting the allocated size (bytes)
in pServerinfo > usNumServers. NSC_MORE_DATA will be returned in case the
application did not allocate enough memory. In this case, the correct number
of defined servers is returned in pServerinfo > usNumServers. The application
can call this function again after re-allocating the actual required memory.

B When calling this function asynchronously, the data will be returned in the
event data as described below for function NSC_Event_Get(). In this case the
pEventData>pData>cData should be cast to NSC_SERVER_INFO_LIST_ST* (see
Section 4.1.7.5).




Q': OUdiOCOdeS AC Voca for Windows

4.1.3 Event Management Functions

4.1.3.1 NSC_Event_Get

Description

This function retrieves an event from the event queue.

Syntax

NSC_ERR_TP NSC_Event_Get
(short sResourcelD,
long 1 Timeout,

NSC_EVENT DATA_ST  *pEventData):

Input

sResourcelD Defines the Resource ID for which an event is
retrieved.

ITimeout Defines the maximal time to wait for an event
(milliseconds). If set to '0', the function returns
immediately.

Output
*pEventData Defines the pointer to the event data that was

returned (see Section 4.1.7.2 and notes below).

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)

Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Reference Guide 26 Document #: LTRT-13180



Notes
B This function is used to retrieve four possible event types:

i Function Termination Events - Events generated at function
termination (generated only by functions called in asynchronous
mode)

ii. Application Events - Events generated by application(s) (see
NSC_Event_Put() in Section 4.1.3.2)

iii. Notification Events - generated by the server (see Section 4.1.9):

¢ NSC_NOTIFY_SERVER_CONNECT
¢ NSC_NOTIFY_SERVER_DISCONNECT
iv. Request Events (see Section 4.1.9):

¢ NSC_REQUEST_AUDIOMAINSTREAM
¢ NSC_REQUEST_AUDIOPROMPTSTREAM

B If sResourcelD is set to NSC_ANY_RESOURCE (see Section 4.1.10) events are
retrieved from any available resource.

B If sResourcelD is set to NSC_NO_RESOURCE (see Section 4.1.10) events that
have no relation to a specific resource are retrieved.

m If during ITimeout no events are retrieved, the function will return with
NSC_NO_EVENT (see Section 4.1.11).

See Section 4.1.9 for the list of events.

Most of the events do not include any data (in the structure
NSC_EVENT_DATA_ST member pData). Some specific events (e.g.,

type i. above) are used to pass data to the application. An example of such a
function is NSC_Server_InfoGet (see Section 4.1.2.4).

B The data is written to pEventData > pData, which is an NSC_DATA_ST
structure (see Section 4.1.7.1).
In this case, the application will perform the following steps before calling
NSC_ Event_Get():
1) The pEventData[ dData[ dData should be allocated with at least a size of 1 Kbytes.
2) Set pEventData[ dData[JISizeBytes to the size (bytes) allocated at stage 1.

When an event with data is retrieved, the following steps should be followed
in order to retrieve the data:
1) |If pEventData>Erroris NSC_MORE_DATA then the application did not allocate

enough memory. The size of the memory to be allocated is returned in
pEventData>pData>ulSizeBytes. Repeat Steps 1) and 2) above with this size.

2) Cast pEventData>pData>cData to a pointer to the structure required. For example
for the function NSC_Server_InfoGet (see Section 4.1.2.4) the casting is to a pointer
to NSC_SERVER_INFO_LIST_ST (see Section 4.1.7.5).




QC audiocodes

4.1.3.2 NSC_Event_Put

Description
This function puts an event into the event queue.

Syntax
NSC_ERR_TP NSC_Event Put
(const NSC_HEADER_ST *pEventData;
Input
pEventData Defines the pointer to the event data (see Section
4.1.7.2) to be generated in the event queue.

Output

None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
B This function generates events of type ii (see above)

B [f sResourcelD is set to NSC_NO_RESOURCE the event is generated without
relation to a specific resource.




4.1.4 Resource Management Functions

4.1.4.1 NSC_Resource_Get

Description

This function allocates an NSC Speecher/Spotter resource from the available pool
of NSCServer resources.

Syntax
NSC_ERR_TP NSC_Resource_ Get
(const char *pstrResourceType,
NSC_FLAG_TP ClearHistory,
long ITimeout,
const char *pstrServerlP,
short *psResourcelD);
Input

*pstrResourceType Specifies the type of resource required. If NULL or
empty string, then the first available resource will
be obtained with no selection criteria. Refer to the
NSCServer Configuration Manual for resource
configuration.

ClearHistory If set to NSC_YES, this function will clean the
resource history. If set to NSC_NO, resource
history is not cleaned.

ITimeout Defines the maximal period of time in milliseconds
to wait for an available resource. When set to"-1",
the function will wait indefinitely (until a suitable
resource is available).

*pstrServerlP Defines a specific IP address of the server from
which this resource should be allocated.
*pstrServerlP Defines a specific IP address of the server from

which this resource should be allocated.

Output

*psResourcelD Defines the NSC Speecher/Spotter resource ID.




QC audiocodes

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous):
Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
B The resource history includes:
e Loaded grammars

e All parameter values set by the application (e.g., log directory, recognition
parameters)

B The resource type consists of three optional strings (Please refer to NSCServer
Configuration Guide for further information on setting resources):
e Language code (e.g., En-Us)
o Tier (e.g., Tier=4)
e Label (e.g., En-US-T4-CONFIRM), which enables to create sets of
resources to be accessed by their labels only.

If timeout is over and there were no available resources, the function will
return:

e NSC_TIME_OUT —if all resources of the requested type have been
allocated.

e NSC_PARAM_INVL - the requested type of resource is not available (was
not configured)

B In order to force getting a resource from a specific server location, assign the
pstrServerlP with a specific server IP; otherwise, use NULL to indicate that
resource origin is chosen internally by NSC.




4.1.4.2 NSC_Resource_Free

Description

Frees an NSCServer resource. The resource is added to the pool of available
NSCServer resources.

Syntax
NSC_ERR_TP NSC_Resource Free (short sResourcelD);

Input

sResourcelD Defines the NSCServer resource ID.

Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
Synchronous only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
None




QC audiocodes

4.1.4.3 NSC_Resource_Abort

Description
This function aborts the operation of an NSCServer resource.

Syntax
NSC_ERR_TP NSC_Resource_ Abort
(const NSC_HEADER_ST *pHeader,
short sResourcelD);
Input
*pHeader Defines the pointer to NSC_HEADER_ST which
includes the flag for synchronous/asynchronous
operation and additional data structures that can
be used for application purposes.
sResourcelD Defines the NSC Speecher/Spotter resource ID.
Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous):
Both

Relevant to (NSC Speecher/NSC Spotter/Both):
Both




Reference Guide 4. Function Definitions

Notes

B If aresource operation is aborted while the resource is notin idle state, the
operation will return with NSC_ABORTED error code (see Section 4.1.11).

B In asynchronous mode this function creates an NSC_EVENT_RESOURCE_ABORT
(see Section 4.2.7).

Version 1.0 33 AC Voca for Windows



QC audiocodes

4.1.4.4 NSC_Resource_InfoGet

Description

This function retrieves information on a specific resource.

Syntax
NSC_ERR_TP NSC_Resource_ InfoGet
(const NSC_HEADER_ST *pHeader,
short sResourcelD,
NSC_RESOURCE_INFO_ST *pResourcelnfo);
Input
*pHeader Defines the pointer to NSC_HEADER_ST which
includes the flag for synchronous/asynchronous
operation and additional data structures that can
be used for application purposes.
sResourcelD Defines the NSC Speecher/Spotter resource ID.
*pResourcelnfo In Synchronous mode, this is a pointer to an
allocated NSC_RESOURCE_INFO_ST structure (see
Section 4.1.7.6 and the notes below). In
Asynchronous mode this pointer can be NULL (see
the notes below).
Output
*pResourcelnfo In synchronous mode, this is a pointer to the

resource information (see notes below).

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
Both




Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

The resource type that is returned in pResourcelnfo->strType will contain the
resource label if it exists; otherwise it will return the resource type (e.g., En-
Us,Tier=2).

When calling this function synchronously the resource information will be
returned in the structure pointed to by *pResourcelnfo. The application will
need to allocate the structure before calling this function, allocating the
memory required for NSC_RESOURCE_INFO_ST. NSC_MORE_DATA will be
returned in case the application did not allocate enough memory. The
application can call this function again after re-allocation of the required
memory.

When calling this function asynchronously the data will be returned in the
event data as described in Section 4.1.3.1 for function NSC_Event_Get(). In
this case the pEventData>pData>cData should be cast to
NSC_RESOURCE_INFO_ST* (see Section 4.1.7.6).




QC audiocodes

4.1.5

Audio Channel Management Functions

The NSC SpeechBlade™ Server supports three methods of sending PCM audio
samples to the NSC Speecher/Spotter resources (discussed below). The method of
sendingPCM audio samples is set at run-time by the application. The method is set
before recognition is started by calling the NSC_Resource_AudioChannelSet() function.

The supported methods of sending PCM audio samples are:

1.

A direct connection to the telephony board(s), using a CT bus interface. The
connection between the boards is done through a standard CT bus cable (see
the NSC SpeechBlade™ Server Hardware Installation Guide). When using this method
the application sets the connection between a given audio PCM channel
(stream, slot) and the NSC Speecher/Spotter resource, using the
NSC_Resource_AudioChannelSet() function.

Note: NSCServer is configured according to the CT bus settings of the telephony
board(s) (e.g., SC, H100). This configuration is done once for each server having
a CT bus connection between the telephony board(s) and NSCSpeechBlade™(s).
Please refer to NSCServer Configuration Manual for the CT bus configuration
procedure.

‘Feeding’ PCM samples at run time through the PCl bus (H/W interface between
NSCSpeechBlade™(s) and the Host). The application sets the connection to the
NSC Speecher/Spotter resource as PCl, using the NSC_Resource_AudioChannelSet()
function. After recognition is started, the application sends blocks of PCM
samples using the NSC_Resource_AudioMainStream() function for the main audio
channel and NSC_Resource_AudioPromptStream() for the prompt audiochannel.

RTP protocol - RTP/RTCP protocol session actually consists of two separate
channels — one for audio samples (RTP stream) and another one for statistical
and informational data related to the audio stream (RTCP channel). NSC Server
is an RTP/RTCP “receiver” that utilizes audio and statistical information
supplied by RTP “sender” (theapplication).

The NSC engines (Speecher/Spotter) supports PCM audio sampled at 8000
samples/sec, in one of three PCM Formats:

1.

Linear (16-bit), defined by NSC_AUDIO_LINEAR (not supported in the RTP
mode).

A-law (8-bit), defined byNSC_AUDIO_ALAW.
p-law (8-bit), defined by NSC_AUDIO_ULAW.




4.1.5.1 NSC_Resource_AudioChannelSet

Description

This function sets the type of PCM audio samples and the method that will be used

to send PCM audio samples to the resource (refer to 4.1.5).

Syntax

NSC_ERR_TP NSC_Resource AudioChannelSet

(const NSC_HEADER_ST *pHeader,
short sResourcelD,
unsigned short usMainStreamFormat,
unsigned short usPromptStreamFormat,
short sMainStream,
short sMainSlot,
short SPromptStream,
short sPromptSlot);
Input
*pHeader Defines the pointer to NSC_HEADER_ST
which includes the flag for
synchronous/asynchronous operation and
additional data structures that can be used
for application purposes.
sResourcelD Defines the NSC Speecher/Spotter resource
ID.
usMainStreamFormat Defines the PCM format of the main stream

usPromptStreamFormat

sMainStream

sMainSlot

(see Section 4.1.10 for possible values).

Defines the PCM format of the prompt
stream (see Section 4.1.10 for possible
values).

Defines the main CT bus stream ID. (Set the
value to NSC_FEED_STREAMING_MODE if
the CT interface is not used).

Defines the main CT bus timeslot within the
stream where PCM samples are allocated.
(Set the value to
NSC_FEED_STREAMING_MODE if the CT
interface is not used).




Q‘: OUdiOCOdeS AC Voca for Windows

sPromptStream Defines the prompt CT bus stream ID. (Set
the value to NSC_FEED_STREAMING_MODE
if the CT interface is not used).

sPromptSlot Defines the prompt CT bus timeslot within
the stream where PCM samples are
allocated. (Set the value to
NSC_FEED_STREAMING_MODE if the CT
interface is not used).

Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

B Working in Barge-In mode is not relevant to NSC Spotter for this reason
parameters sPromptStream and sPromptSlot are ignored when using the NSC
Spotter and should be set to NSC_NO_AUDIO.

B When using the CT bus method for transferring the PCM audio, this function
connects the CT bus PCM streams to a specific resource.

B The main stream (represented by: sMainStream and sMainSlot) is the stream
containing the utterance for recognition.

B The prompt stream (represented by: sPromptStream and sPromptSlot) is the
stream containing the played prompt and is used for a system running with
barge-in that requires echo cancellation.

Reference Guide 38 Document #: LTRT-13180



Reference Guide 4. Function Definitions

B If sMainStream, sMainSlot, sPromptStream and sPromptSlot are all set to
NSC_FEED_STREAMING_MODE. The PCM bus method for transferring the
PCM audio is used.

B If sPromptStream and sPromptSlot are set to NSC_NO_AUDIO, and
usPromptStreamFormat is set to NSC_NO_AUDIO, echo cancellation is not
activated on this resource.

Version 1.0 39 AC Voca for Windows



Q‘: OUdiOCOdeS AC Voca for Windows

4.1.5.2 NSC_Resource_AudioMainStream

Description

Sends a block of PCM samples representing a played prompt (or part of it) from the
prompt channel to a resource. This function is used only in case of using feed
streaming mode (see Section 4.1.5.1).

Syntax:

NSC_ERR_TP NSC_Resource_AudioMainStream
(short sResourcelD,
long ISizeBytes,
const void *pvAudioStream) ;

Input

B sResourcelD - NSC Speecher/Spotter resource ID
B [SizeBytes — The size of the data block to be transferred, in bytes.
B *pvAudioStream — Pointer to the PCM data block

SResourcelD Defines the NSC Speecher/Spotter resource ID.
ISizeBytes Defines the size of the data block to be
transferred, in bytes.
*pvAudioStream Defines the pointer to the PCM data block.
Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
N/A

Reference Guide 40 Document #: LTRT-13180



Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

The application is responsible for sending the blocks in sequential order; each
block (pointed by pvAudioStream) is sent after getting the
NSC_REQUEST_AUDIOMAINSTREAM event from the resource. The first
NSC_REQUEST_AUDIOMAINSTREAM is generated by the resource
immediately after calling the recognition function (see Section 4.2.2.1).

There are two normal cases of termination of the process of streaming audio
blocks:

e Recognition is finished (decision is made by NSC Speecher/Spotter
resource). In this case, no more NSC_REQUEST_AUDIOMAINSTREAM
events are produced and recognition results are available.

e Application has no more audio blocks to send (e.g., streaming from audio
files), and recognition has not ended yet. In this case, the application
needs to send one empty block with ISizeBytes assigned as
NSC_NO_AUDIO. This will force the recognition to terminate and extract
recognition results. Otherwise, if the application stops streaming, the
resource is in idle waiting (no timeout) to get more audio blocks.

e Note: It is always possible to terminate the recognition by aborting the
resource (call NSC_Resource_Abort). In this case there will be no
recognition results.

The resource will disregard all blocks sent before or after the recognition
takes place (this does not produce an error).

Block size (ISizeBytes) must be an even number (except when assigned as
NSC_NO_AUDIO for streaming termination.

Recommended (not mandatory) block sizes to send to the resource are:
e For Linear PCM format (sample size 2 bytes): 768 bytes
e For A-law/u-law formats (sample size 1 byte): 896 bytes




QC audiocodes

4.1.5.3 NSC_Resource_AudioPromptStream

Description

Sends a block of PCM samples representing an utterance (or part of it), from the
main channel to a resource. This function is used only in case of using feed
streaming mode (see Section 4.1.5.1) and the Barge-in operation (see Section 7.3.1
in the NSC Speecher/Spotter User’s Guide).

Syntax
NSC_ERR_TP NSC_Resource_ AudioPromptStream
(short sResourcelD,
long ISizeBytes,
const void *pvAudioStream) ;
Input
SResourcelD Defines the NSC Speecher/Spotter resource ID.
ISizeBytes Defines the size of the data block to be
transferred, in bytes.
*pvAudioStream Defines the pointer to the PCM data block.
Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
N/A

Relevant to (NSC Speecher/NSC Spotter/Both)
NSC Speecher only




Notes

B This function is used for echo cancellation for applications running with barge-
in using NSC echo cancellation capabilities.

B There are two normal cases of termination of the process of streaming audio
blocks:

e Recognition is finished (decision is made by NSC Speecher resource). In
this case, no more NSC_REQUEST_AUDIOPROMPTSTREAM events are
produced and recognition results are available.

e Application has no more audio blocks to send (e.g., streaming from audio
files), and recognition has not ended yet. In this case, the application
needs to send one empty block with ISizeBytes assigned as
NSC_NO_AUDIO. This will force the recognition to terminate and extract
recognition results. Otherwise, if the application stops streaming, the
resource is in idle waiting (no timeout) to get more audio blocks.

e Note: It is always possible to terminate the recognition by aborting the
resource (call NSC_Resource_Abort). In this case there will be no
recognition results.

B The resource will disregard all blocks sent before or after the operation (e.g.
recognition) took place. In this case, blocks and an appropriate error are given
(refer to 4.1.11).

Block size (ISizeBytes) must be an even number.

Experience shows that the most effective block sizes to send to the resource
are:

e  For Linear PCM format (sample size 2 bytes): 768 bytes
e For A-law/u-law formats (sample size 1 byte): 896 bytes




Q‘: OUdiOCOdeS AC Voca for Windows

4.1.6 RTP Management Functions

The following is a list of new RTP related API functions and data structures.

4.1.6.1 NSC_RTPSession_Open

Description

Start a new RTP/RTCP session. RTP/RTCP session is created on a specific server
(passed as an input parameter). RTP/RTCP endpoints are returned to the client
inside session info parameter. Created session is not associated with ASR resource
and is not ready to process RTP/RTCP packets.

Syntax
NSC_ERR_TP NSC_RTPSession_Open
(const NSC_HEADER_ST *i_pHeader,
const char* i_strClientlp,
Short i_sClientRtcpPort,
const char* i_strServerlp,
NSC_RTP_SESSION_ST *0_pSessioninfo)
Input
NSC_HEADER_ST Defines the pointer to NSC_HEADER_ST which

*i_pHeader includes the flag for synchronous/asynchronous

operation and additional data structure.

i_strClientlp Defines the client IP for sending RTCP protocol
Receiver Reports (RRs).
i_sClientRtcpPort Defines the client port for sending RTCP

protocol Receiver Reports (RRs)i_strServerlp -
IP address of the relevant NSC server. When
NULL is passed the configured server is used, if
more than one configured servers exist and this
parameter is set to NULL an error is returned.

o_pSessionlinfo Defines the output structure defining the
properties of a newly created RTP session.

Reference Guide 44 Document #: LTRT-13180



Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
N/A

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




QC audiocodes

4.1.6.2 NSC_RTPSession_Close

Description
This function closes the RTP/RTCP session.

Syntax
NSC_ERR_TP NSC_RTPSession_Close
(const NSC_HEADER_ST *1_pHeader,
NSC_RTP_SESSION_ST *1_pSessionlnfo)
Input
i_pHeader Defines the pointer to NSC_HEADER_ST which
includes the flag for synchronous/asynchronous
operation and additional data structure.
I_pSessioninfo Defines the structure defining the properties of
an already open RTP session.
Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
N/A

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




4.1.6.3 NSC_Resource_RTPChannel_Set

Description

Associates RTP session with the particular ASR resource. Stores ASR resource
number in the session. Setting the resource is allowed on idle sessions only.

Syntax
NSC_ERR_TP NSC_Resource_ RTPChannel Set
(const NSC_HEADER_ST *1_pHeader,
short i1_sResourceld
unsigned long i_IRtpSessionld)
Input
i_pHeader Defines the pointer to NSC_HEADER_ST which
includes the flag for synchronous/asynchronous
operation and additional data structure.
i_sResourceld Defines the Resource ID.
i_IRtpSessionld Defines the RTP Session id (returned by the
NSC_RTPSession_Open call) that identifies
sessions that should be associated with a given
resource.
Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
N/A

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




Q’: OUdiOCOdeS AC Voca for Windows

4.1.6.4 NSC_Resource_RTPChannel_Reset

Description

De-associate RTP session from ASR resource. Resetting resource is allowed on IDLE
sessions only.

Syntax
NSC_ERR_TP NSC_Resource RTPChannel Reset

(const NSC_HEADER_ST *i_pHeader,
short 1_sResourceld)

Input
i_pHeader Defines the pointer to NSC_HEADER_ST which
includes the flag for synchronous/asynchronous
operation and additional data structure.
i_sResourceld Defines the Resource ID.
Output
None

Returned Values
NSC_ERR_TP (see Section 4.1.11)

Include Files

nsc.h, nsc_err.h

Supported Modes (Synchronous/Asynchronous)
N/A

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Reference Guide 48 Document #: LTRT-13180



4.1.7 NSC API Structures

The following describes NSC API structures.

4.1.7.1 NSC_DATA_ST

NSC_DATA_ST
(Data Structure)

Member Name Type Description
ulSizeBytes unsigned long Defines the size of data to transfer (in
bytes).
cData[1] unsigned char Defines the transferred data.

Defines the general data structure for transferring data between the host and the
NSC Speecher/Spotter resources.

4.1.7.2 NSC_EVENT_DATA_ST

NSC_EVENT_DATA_ST

(Event Data Structure)

Member Name Type Description

sResourcelD Short Defines the ID of the resource that
generated the event.

usDescriptor unsigned short Defines the code associated with the
event.
Error NSC_ERR_TP Defines the error code associated with

the event (see Section 4.1.11).

sAuxData short Defines the Bytes sent by the host in
[NSC_AUXILIARY_D | function call; returns to the host
ATA_LEN] without any change (e.g., for
debugging).
*pData NSC_DATA_ST Defines the data associated with the
(see Section event if relevant, otherwise NULL.
4.1.7.1)

Defines a structure holding the event data retrieved from the NSCServer event
queue.




QC audiocodes

4.1.7.3 NSC_HEADER_ST

NSC_HEADER_ST

(Function Header Structure)

Member Name Type Description
SyncAsyncFlag NSC_FLAG_TP Defines the size of data to transfer (in
bytes)
sAuxData short Defines the bytes sent by the host in
[NSC_AUXILIARY_D | function call; returns to the host
ATA_LEN] (through the NSC_EVENT_DATA_ST)

without any change (e.g., for
debugging).

Defines a structure provided as a header for all functions that supports
asynchronous operational mode.

4.1.7.4 NSC_SERVER_INFO_ST

NSC_SERVER_INFO_ST

(Single Server Info Structure)

Member Name Type Description
sID Short Defines the ID of the Server.
strip Char Defines the I.P. address of the server.
[NSC_SERVER_IP_LE
N+1]
ulPort unsigned long Defines the port used for the server.
[LastConnectTime Long Defines the server's last connection
time.
[LastDisconnectTime Long Defines the server's last disconnection
time.
usNumReservedResources unsigned short Defines the number of resources

reserved by the server for use by this
application.

Defines the structure representing server information defined in the system.




4.1.7.5 NSC_SERVER_INFO_LIST_ST

NSC_SERVER_INFO_LIST_ST

(Server List Structure)

Member Name Type Description
usNumServers unsigned short Number of servers.
Info[1] NSC_SERVER_INFO_ST | Structure holds server’s information.

Defines the structure representing information for a list of servers.

4.1.7.6 NSC_RESOURCE_INFO_ST

NSC_ RESOURCE_INFO_ST

(Single Resource Structure)

Member Name Type Description
strType char Defines the resource Type/Label.
[NSC_RESOURCE_TYPE_L
EN+1]
sID short Defines the NSC Speecher/Spotter
resource ID.
sinternallD short Defines the internal resource ID
on the server the resource was
allocated on.
sServerlD short Defines the unique server ID.

Defines the structure representing resource information.




QC audiocodes

4.1.7.7 NSC_PARAM_ST

NSC_ PARAM_ST

(Single Parameter Structure)

Member Name Type Description
siD short Defines the parameter ID.
ulSizeBytes unsigned long Defines the parameter size (bytes).
sValue short Defines the short parameter value.
IValue Long Defines the long parameter value.
pstrValue char* Defines the char* parameter value.

Defines the structure representing parameter ID, size and value.

4.1.7.8 NSC_PARAM_LIST ST

NSC_ PARAM_LIST _ST

(Parameter List Structure)

Member Name Type Description
usNumParameters unsigned short Defines the number of parameters on
the list.
Param[1] NSC_PARAM_ST Defines the array of NSC_PARAM_ST

containing the data of the parameters.

Defines the structure representing a list of parameters data.




Reference Guide

4. Function Definitions

4.1.7.9 NSC_RTP_SESSION_ST

NSC_RTP_SESSION_ST

(Parameter List Structure)

Member Name Type
ISessionld unsigned long
sServerRtpPort unsigned short
sServerRtcpPort unsigned short
strServerName[256] Char

Description

Unique number that identifies each
RTP session. This ID is generated by
the NSCServer that creates the
session.

RTP port that should be used when
sending RTP stream to the server

RTCP port that should be used when
sending RTCP stream to the

server

Hostname of the server computer that

will handle incoming RTP/RTCP
streams

Data structure that contains RTP session information

Version 1.0

53

AC Voca for Windows



QC audiocodes

4.1.8 NSC API Types

Name Type Description
NSC_ERR_TP short NSC Error Type. For values refer to
4.1.11
NSC_FLAG_TP short NSC Flag Type. For values refer to
4.1.10
NSC_Callback_EventRep _cdecl* Type of ‘call back’ function

ort

4.1.9 NSC API Event Codes

Name Type Description

Event Codes
Server Related Events

NSC_EVENT_SERVER_ADD 201 Completion Event for
NSC_Server_Add()

NSC_EVENT_SERVER_REMOVE 202 Completion Event for
NSC_Server_Remove()

NSC_EVENT_SERVER_FIND 203 Completion Event for
NSC_Server_Find()

NSC_EVENT_SERVER_INFOGET 204 Completion Event for
NSC_Server_InfoGet()

Resource Related Events

NSC_EVENT_RESOURCE_INFOGET 301 Completion Event for
NSC_Resource_InfoGet()

NSC_EVENT_RESOURCE_ABORT 302 Completion Event for
NSC_Resource_Abort()

NSC_EVENT_RESOURCE_AUDIOCHANNELSET | 303 Completion Event for
NSC_Resource_AudioChannelSet()

NSC Generated Events

NSC_REQUEST_AUDIOMAINSTREAM 1001 | Generated when the NSC
Speecher/Spotter is waiting for data
representing the audio stream on
the Main Channel




Name Type Description

NSC_REQUEST_AUDIOPROMPTSTREAM 1002 K Generated when the NSC
Speecher/Spotter is waiting for data
representing the audio stream on
the Prompt Channel

Notifications

NSC_NOTIFY_SERVER_CONNECT 2001 Server has connected
NSC_NPTIFY_SERVER_DISCONNECT 2002 Server has disconnected
RTP Related Events

NSC_NOTIFY_RTP_SESSION_ERR 2010 ' Asynchronous notification sent
when RTP error occurs

NSC_NOTIFY_RTP_SESSION_START 2011 Asynchronous notification sent
when server is waiting for RTP
stream to start

NSC_EVENT_RTPSESSION_OPEN 501 Asynchronous method call
completes

NSC_EVENT_RTPSESSION_CLOSE 502 Asynchronous method call
completes

NSC_EVENT_RESOURCE_RTPCHANNEL_SET 503 Asynchronous method call
completes

NSC_EVENT _RESOURCE_RTPCHANNEL_RESET 504 Asynchronous method call

completes
4.1.10 NSCAPI Constants
Name Type Description
General Definitions
NSC_YES 1 True
NSC_NO 0 False
NSC_SYNC_FLAG 1 Flag to indicate synchronous operational
mode
NSC_ASYNC_FLAG 0 Flag mode to indicate asynchronous

operational




QC audiocodes

Name

NSC_FEED_STREAMING_MODE

1
=

NSC_SERVER_IP_LEN 64
NSC_EVENT_USER_OFFSET 10000
Type of PCM Format

NSC_NO_AUDIO -1
NSC_LINEAR 0
NSC_ULAW 1
NSC_ALAW 2

Echo Cancellation Operational Modes

NSC_EC_DISABLE 0
NSC_EC_ADAPT_RESTART 1
NSC_EC_ADAPT_CONTINUE 2
NSC_EC_ADAPT_FREEZE 3

Auxiliary Data Length in Message
NSC_AUX_DATA_LEN 4

Resource Type and Selection of Resources

NSC_RESOURCE_TYPE_LEN 256

NSC_ANY_RESOURCE -1

NSC_NO_RESOURCE -9999

Parameter Constants

Type

Description

Used to set the streaming mode to FEED
PCM audio samples (used in
NSC_Resource_AudioChannelSet)

The maximal length allocated for IP address

Offset used for event ID’s for use in
application (using NSC_Event_Put())

Indication that channel has no input audio
(e.g., when setting channel not in EC mode)

Raw PCM audio data
U-law encoded PCM audio data

A-law encoded PCM audio data

NSC Speecher echo-cancellation is disabled
Echo-cancellation is restarted (initialized)

Echo-cancellation adaptation continued
from previous recognition

Adaptation is ‘frozen’ (continues from
same point as in previous
recognition)

Auxiliary data length of message

The maximal length for resource type (e.g.
"En-Us,Tier=2")

Code to get event from any resource

Code to put/get an event that is not on a
specific resource (e.g. Server events).




4.1.11

Name

NSC_NO_ERR
NSC_INIT_FAIL
NSC_MSG_FAIL

NSC_TIME_OUT
NSC_RESOURCE_INVL
NSC_RESOURCE_BUSY
NSC_MALLOC_FAIL
NSC_MORE_DATA
NSC_PARAM_INVL
NSC_WRONG_USAGE
NSC_PATH_TOO_LONG
NSC_FILE_ERR
NSC_RT_OVERRUN
NSC_MSG_QUE_OVFL

NSC_PCM_RX_FAIL
NSC_ABORTED
NSC_NO_EVT

NSC_SERVER_ERROR
NSC_SERVER_INVL

NSC_SERVER_ALREADY_EXISTS
NSC_SERVER_NO_SOCKET

NSC_SERVER_BUSY

NSC API Error Codes

NSC_ERR_TP

(Function Error Return Codes — As defined in Nsc_err.h)

Value

11
12

13
21
22
31
32
41
42
51
61
71
72

73
101
201

3001
3002
3003
3004

3005

Description

No error
Initialization failure
Message failed to reach the server (no connection to

server)

The timeout limit has been reached

Function addressed invalid resource 1D

Attempt to perform an operation on a busy resource
Memory allocation failure

Attempt to perform an operation on a busy resource
Invalid parameter has been provided

Function was used incorrectly

The path provided is longer than allowed

Error in file manipulation (e.g., fopen(), fwrite(), fread()).
Processing cannot be completed in real time

Host failed to read message(s) from a resource in real
time

Resource failed to receive PCM samples

Abort request encountered

No events were returned during the period given in the
NSC _Event Get() function

General error in NSCServer
Attempt to perform an operation on an invalid server
Attempt to add a server that already exists on the list

IP Address provided is invalid or a server does not exist on
the provided IP address.

Attempt to perform an operation on a busy server




QC audiocodes

AC Voca for Windows

4.2 NSC ASR API

The following describes NSC ASR API functions.
4.2.1 Initialization/Termination Functions

4.2.1.1 NSCASR_Init

Description
This function initializes the NSCASR API.

Syntax
NSC_ERR_TP NSCASR_Init();

Input
None

Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Synchronous Only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

This function must be called before calling any functions using NSCASR API.

Reference Guide 58

Document #: LTRT-13180



4.2.1.2 NSCASR_Version_Get

Description
This function retrieves the current NSCASR API version number.

Syntax
NSC_ERR_ TP  NSCASR_Version_Get
(char *pstrVersion,
short *psSize);
Input
*pstrVersion Defines the allocated string.
*psSize Defines the allocated size of the string.
Output
*pstrVersion Defines the string containing the API version
number.
*psSize Defines the actual size of the string returned.

Returned Values
NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Synchronous Only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




Q’: OUdiOCOdeS AC Voca for Windows

Notes

The NSC_MORE_DATA error message will be returned, if the size of the string is too
small to include the Version Number. The actual size required is returned in psSize
and the string can be re-allocated in order to call the function again.

4.2.1.3 NSCASR_Terminate

Description
This function terminates the NSCASR API.

Syntax
NSC_ERR_TP NSCASR_Terminate();

Input

None

Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9).

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)

Synchronous Only

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Reference Guide 60 Document #: LTRT-13180



4.2.2

4.2.2.1

Notes

After this function is called, no other NSCASR API function except NSC_ASR_Init(), can

be called.
Recognition Functions

NSCASR_Recognize

Description

Calling this function starts the speech recognition process on the given resource.
The recognition is performed on audio streams (provided through the CT bus or
through the PCI bus) according to the grammars and parameters that were set by
the application. The function can be activated both in synchronous and
asynchronous modes. The NSCASR_Recognize ResultGet function is used to

retrieve the recognition results.

Syntax

NSC_ERR_TP NSCASR_Recognize

(const NSC_HEADER_ ST

short

*pHeader,
sResourcelD,

const NSCASR_RCG_PARAMS_ ST *pRecognitionParameters,

short sGrammar 1dx) ;
Input
pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the ID of the resource that will be

pRecognitionParameters

used for the recognition that was received
after calling NSC_Resource_Get (see
Section 4.1.4.1).

Defines the pointer to the Recognition
Parameters Structure (see Section 4.2.6.2).

sGrammar dx Defines the index of the grammar to be
used in the recognition.
Output
None

Version 1.0

61

AC Voca for Windows



QC audiocodes

Returned Values
NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
NSC Speecher Only

Notes

All the parameters that are not set as NSC_PARAM_DEFAULT_VALUE (in the
structure of *pRecognitionParameters) will overwrite the current default
parameters assigned for this resource. These parameters are applied only for
the current recognition operation. After recognition is complete, the default
parameters are not changed and remain valid for the next recognition
process.

For recognition using the active grammars, this function should be called with
grammar index set to NSCASR_ACTIVE_GRAMMAR_INDEX (see Section 4.2.8).

The NSCASR_EVENT_CONTENT_SPOTTED (see Section 4.2.7) event is
generated to indicate that relevant speech has been detected based on the
content of the grammar.

This event can be used in barge-in mode in order to stop the playing of the
prompt.

If the PCM audio streams (see Section 4.1.5) are received through the PCl bus
interface, an NSC_REQUEST_AUDIOMAINSTREAM event is generated when
the resource is ready to receive PCM streams after this function is called.

If the recognition was activated with echo cancellation (see Section 3.7.1 of
the NSC Speecher User’s Guide) an NSC_REQUEST_AUDIOPROMPTSTREAM
event is generated when the resource is ready to receive PCM streams of the
prompt being played.




4.2.2.2 NSCASR_Recognize_TimersStart

Description

This function starts the 'no input timeout' timer on the given resource. It is useful in
barge-in mode where ‘no input timeout' might be dependent on prompt duration
(see Section 7.3.2 of the NSC Speecher User’s Guide).

Syntax
NSC_ERR_TP NSCASR_Recognize_TimersStart
(const NSC_HEADER_ST *pHeader,

short sResourcelD);
Input
pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the ID of the resource that will be used
for the recognition that was received after
calling NSC_Resource_Get (see Section 4.1.4.1).
Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
NSC Speecher Only




Q’: OUdiOCOdeS AC Voca for Windows

Notes

B Each time this function is called, the "no input timeout" timer will reset. The
"no input timeout" duration limitation is determined by the parameter
usNolnputTimeout (a member of NSCASR_ACQ_PARAMS_ST).

B This function can only be called on a resource that is currently in the
recognition process.

B If the parameter StartTimers (a member of NSCASR_ACQ_PARAMS_ST) (see
Section 4.2.6.1) is set to NSC_NO, the "no input timeout" timer will not start
until this function is called.

Reference Guide 64 Document #: LTRT-13180



Reference Guide

4. Function Definitions

4.2.2.3 NSCASR_Recognize_ResultsGet

Description

This function retrieves the recognition results structure containing all the
information of the recognized utterance.

This function must be called after recognition is completed successfully. If
NSCASR_Recognize() is called asynchronously this function must be called only after
an NSCASR_EVENT_RECOGNIZE event is received.

Syntax

NSC_ERR_TP NSCASR_Recognize ResultsGet

(short

sResourcelD,

NSCASR_RCG_RES ST  *pRecognitionResults);

Input
sResourcelD

*pRecognitionResults

Defines the ID of the resource that will be
used for the recognition that was received
after calling NSC_Resource_Get (see Section
4.1.4.1).

Defines the pointer to NSCASR_RCG_RES_ST
(see Section 4.2.6.5).

Output
*pRecognitionResults

Defines the pointer to NSCASR_RCG_RES_ST
(see Section 4.2.6.5) containing the results.

Returned Values

NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)

Synchronous only

Version 1.0

65 AC Voca for Windows



Q': OUdiOCOdeS AC Voca for Windows

Relevant to (NSC Speecher/NSC Spotter/Both)
NSC Speecher Only

Notes

B The pRecognitionResults pointer should be allocated with at least a size of
1Kbytes.

B The *pRecognitionResults > Size should be assigned with the size (bytes) of
the allocation.

B Error of NSC_MORE_DATA is returned if the size of the allocation is too small
for storing the recognition results.

B The resource assigns the actual needed allocation size in
*pRecognitionResults > Size.

Reference Guide 66 Document #: LTRT-13180



4.2.3

4.2.3.1

Grammar Management Functions

NSCASR_Grammar_Load

Description

This function loads a compiled grammar from the host memory to a specific
resource in the NSC Speecher/Spotter memory. This adds the grammar to the pool
of grammars available for recognition of the resource.

Syntax

NSC_ERR_TP NSCASR_Grammar_Load

(const NSC_HEADER_ST

short
short

const NSC_DATA_ST

*pHeader,
sResourcelD,
sGrammarldx,
*pGrammarData) ;

Input
*pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the NSCServer resource ID.
sGrammar Idx Defines the grammar index (a unique number
representing a grammar loaded to the
resource).
*pGrammarData Defines the pointer to a data structure (see
Section 4.1.7.1) containing grammar data.
Output
None

Returned Values

NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)

Both




Q‘: OUdiOCOdeS AC Voca for Windows

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
B Datain pGrammarData is read from the compiled grammar file in the
following way:
i. Open the compiled grammar file in binary mode.

ii. Read the first long word, which is the Offset indicating the beginning
of relevant data to read.

iii. Read a second long word that indicates the size (in bytes) of data to
read.

iv. Perform a seek operation (from beginning of file), using the

offset number read in Step (ii).

v. Allocate a memory block of Size bytes.

vi. Read size bytes into allocated block.

vii. Close the file.

B Previously loaded grammars with the same sGrammarldx must be removed
from the resource memory prior to loading a new grammar on this index (see
Section 4.2.3.6).

Reference Guide 68 Document #: LTRT-13180



Reference Guide 4. Function Definitions

4.2.3.2 NSCASR_Grammar_Activate

Description
This function activates a list of pre-loaded grammars.

Syntax
NSC_ERR_TP NSCASR_Grammar_Activate
(const NSC_HEADER_ST *pHeader,
short sResourcelD,
NSC_GRAMMAR_LIST_ST *pGrammarList);
Input
*pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the NSCServer resource ID.
sGrammarList Defines the grammar index (a unique number
representing a grammar loaded to the
resource).
*pGrammarData Defines the pointer to the list of grammars
indexes that should be activated in a
NSC_GRAMMAR_LIST_ST structure (see
Section 4.2.6.7).
Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9).

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Version 1.0 69 AC Voca for Windows



Q': OUdiOCOdeS AC Voca for Windows

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes
B All grammars on the list must be loaded prior to grammar activation.

B All run-time vocabularies (required in the grammar) must be loaded prior to
grammar activation.

B This function can be called numerous times; each call can only add grammars
to the list (i.e., grammars that are not already activated).

B To perform recognition with the active grammars NSCASR_Recognize should
be called (see Section 4.2.2.1) with parameter sGrammarldx set to
NSCASR_ACTIVE_ GRAMMAR_INDEX (see Section 4.2.8).

Reference Guide 70 Document #: LTRT-13180



4.2.3.3 NSCASR_Grammar_DeActivate

Description

This function deactivates a list of grammars.

Syntax
NSC_ERR_TP NSCASR_Grammar_DeActivate
(const NSC_HEADER_ST *pHeader,
short sResourcelD,
NSC_GRAMMAR_LIST_ST *pGrammarList);
Input
*pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the NSCServer resource ID.
pGrammarList Defines the pointer to the list of the grammars
indexes that should be deactivated in a
NSC_GRAMMAR_LIST_ST structure (see
Section 4.2.6.7).
Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9).

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




Q:OUdiOCOdeS AC Voca for Windows

Notes

B If one of the grammars indexes on the grammar list is
NSCASR_ACTIVE_GRAMMAR_INDEX (see Section 4.2.8), then all active grammars
will be deactivated.

B Performing NSCASR_Grammar_Remove() (see Section 4.2.3.6) will automatically
de-activate the removed grammar from the active grammar.

Reference Guide 72 Document #: LTRT-13180



4.2.3.4 NSCASR_Grammar_ActiveGet

Description

This function returns a list of currently activated grammars.

Syntax

NSC_ERR_TP NSCASR_Grammar_ActiveGet
(const NSC_HEADER_ST *pHeader,
short sResourcelD,
NSC_GRAMMAR_LIST_ST *pGrammarList);

Input
*pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the NSCServer resource ID.
*pGrammarList Defines a pointer, in synchronous mode, to an
allocated NSC_GRAMMAR _LIST_ST structure
(see Section 4.2.6.7 and notes below). In
asynchronous mode this pointer can be NULL
(see notes below).
Output
*pGrammarList is Wi i
p In synchronous mode, this will be a pointer to

the list of active grammars (see notes below).

Returned Values
NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




Q‘: OUdiOCOdeS AC Voca for Windows

Notes

When calling this function synchronously the grammar list will be returned in
the structure pointed to by pGrammarlList.

The application will need to allocate the structure before calling this function
and setting the allocated size in pGrammarList>sCount. The error message
NSC_MORE_DATA will be returned in case the application did not allocate
enough memory. In this case the correct number of active grammars is
returned in pGrammarList>sCount. The application can call this function again
after re-allocation of the memory required.

When calling this function asynchronously the data will be returned in the
event data (event: NSCASR_EVENT_GRAMMAR_ACTIVEGET) as described in
Section 4.1.3.1 for function NSC_Event_Get(). In this case, the
pEventData>pData>cData should be sent to NSC_GRAMMAR_LIST_ST* (see
Section 4.2.6.7).

Reference Guide

74 Document #: LTRT-13180



4.2.3.5 NSCASR_Grammar_VocabularyLoad

Description

This function loads a runtime vocabulary (see definition in NSC Speecher User's
Guide) from the host memory to a grammar with runtime vocabulary definition. The
grammar is ready for activation/recognition only after loading all the runtime
vocabularies defined in a particular grammar.

Syntax

NSC_ERR_TP NSCASR_Grammar_VocabularylLoad

(const NSC_HEADER_ST
short

short

const char

const NSC_DATA ST

*pHeader,
sResourcelD,
sGrammarldx,
*pstrVocabularyName,
*pVocabularyData) ;

Input
*pHeader

sResourcelD

sGrammar 1dx

*pstrVocabularyName

Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).

Defines the NSCServer resource ID.

Defines the grammar index (a unigue number
representing a grammar loaded on the
resource).

Defines the name of the runtime vocabulary
defined in the grammar.

*pVocabularyData Defines the pointer to an NSC_DATA_ST (see
Section 4.1.7.1) structure containing the
vocabulary data.

Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9)




QC audiocodes

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
NSC Speecher Only

Notes

This function is used after loading a grammar that contains one or more
runtime vocabularies. All vocabularies must be loaded before the grammar
can be used for recognition or activation.

After loading all runtime vocabularies it is possible to update or change any
one of the runtime vocabularies, if necessary, by calling this function again.

The runtime vocabulary data structure is created after some preprocessing is
done using the NSCGrammar API. (Please refer to the NSCGrammar User's
Guide and the NSCGrammar API Guide.)

In case the same runtime vocabulary appears more than once in a given
grammar, one call to this function with the vocabulary name will set all
occurrences of this vocabulary in the grammar.

In order to not cause a dialect mismatch in runtime vocabularies (defined
during preparation stage), load vocabularies to grammars with the same
dialect code.

It is possible to load a run-time vocabulary with an empty list. However, in
some specific grammars this might result in an invalid grammar (producing
the error: NSCASR_VOC_CAUSE_OPEN_LOOP).




4.2.3.6 NSCASR_Grammar_Remove

Description

This function removes a previously loaded grammar from a specific resource
memory.

Syntax
NSC_ERR_TP NSCASR_Grammar_Remove
(const NSC_HEADER_ST *pHeader,

short sResourcelD,
short sGrammar 1dx) ;
Input
*pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the NSCServer resource ID.
sGrammar 1dx Defines the grammar index (a unique number
representing a grammar loaded on the
resource).
Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9).

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
Both




G:»OUdiOCOdeS AC Voca for Windows

Notes

If an active grammar index is given, the grammar will be first deactivated and then
removed.

Reference Guide 78 Document #: LTRT-13180



Reference Guide 4. Function Definitions

4.2.4 Parameters Management Functions

4.2.4.1 NSCASR_Parameter_Set

Description

This function sets a list of parameters to a specific resource, overwriting the
currently active (default) parameters.

Syntax
NSC _ERR_TP NSCASR_Parameter_Set
(const NSC_HEADER ST “*pHeader,

short sResourcelD,
NSC_PARAM_LIST_ST *pParams) ;
Input
*pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the NSCServer resource ID.
*pParams Defines the pointer to parameters list

structure (see Section 4.1.7.8), which includes
the parameters to be set.

Output
None

Returned Values
NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous):
Both

Version 1.0 79 AC Voca for Windows



Q‘: OUdiOCOdeS AC Voca for Windows

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

B The parameter values set using this function are "sticky", i.e., they overwrite
the currently active parameters for the resource as the resource is allocated.

B When calling NSC_Resource_Get() function, if the 'clear history' flag is set to
NSC_NO then the resource is allocated with the same parameters that were
last set by the NSCASR_Parameter_Set() function.

B If the 'clear history' flag is set to NSC_YES, the resource is allocated with the
default parameters values as set by the server configuration tool (refer to
NSCServer configuration manual).

B When calling NSCASR_Recognize() it is possible to send parameters that will
be used in the current recognition task only. This will not overwrite the
parameters set by the NSCASR_Parameter_Set() function or default
parameters (not 'sticky').

Reference Guide 80 Document #: LTRT-13180



4.2.4.2 NSCASR_Parameter_Get

Description
This function gets the currently active list of parameters on a specific resource.

Syntax
NSC _ERR_TP NSCASR_Parameter_Get
(const NSC_HEADER_ST *pHeader,
short sResourcelD,
NSC_PARAM_LIST_ST *pParams) ;
Input
*pHeader Defines the pointer to the NSC Header
Structure (see Section 4.1.7.3).
sResourcelD Defines the NSCServer resource ID.
*pParams In synchronous mode, this refers to a pointer
to an allocated NSC_PARAM_LIST_ST structure
(see 4.1.7.8 and notes below).
In asynchronous mode this pointer can be
NULL (see notes below).
Output
*pParams In synchronous mode, this will be a pointer to

the list of currently active parameters (see
notes below).

Returned Values
NSC_ERR_TP (see Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both




QC audiocodes

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Notes

When calling this function synchronously, the parameter list will be returned
in the structure pointed to by pParams. The application will need to allocate
the structure before calling this function and setting the estimated size
pParams > usNumParameters. The error message NSC_MORE_DATA will be
returned if the application did not allocate enough memory. In this case, the
correct number of parameters is returned in pParams [_isNumParameters.
The application can call this function again after re-allocation of the memory
required.

When calling this function asynchronously, the data will be returned in the
event data (see Section 4.1.3.1) for function NSC_Event_Get(). In this case the
pEventData>pData>cData should be sent to NSC_PARAM_LIST_ST* (see
Section 4.1.7.8).




Reference Guide 4. Function Definitions

4.2.5

4.2.5.1

Logging Functions

NSCASR_Log_WaveformPathSet

Description

This function overwrites the default directory in which audio and textual are saved
during runtime for a specific resource.

Syntax
NSC_ERR_TP NSCASR_Log_WaveformPathSet

(const NSC_HEADER_ST *pHeader,

short sResourcelD,

const char *pstrWaveformPathName) ;
Input
*pHeader Defines the pointer to the NSC Header

Structure (see Section 4.1.7.3).

sResourcelD Defines the NSCServer resource ID.

*pstriaveformPathName  pefines the name of the path in which to
save the audio log files.

Output
None

Returned Values
NSC_ERR_TP (see table in Section 4.2.9)

Include Files

nscasr.h, nscasr_err.h

Supported Modes (Synchronous/Asynchronous)
Both

Relevant to (NSC Speecher/NSC Spotter/Both)
Both

Version 1.0

83 AC Voca for Windows



Q‘: OUdiOCOdeS AC Voca for Windows

Notes

B When this function is called, the log files (if enabled) are saved in the default
directory as set during configuration of the server (please refer to NSCServer
configuration manual).

This function can be called once per resource.

When a resource is allocated using NSC_Resource_Get(), if the 'Clear History'
flag is set to NSC_NO the previously set path operation is valid. Otherwise the
waveform log path is reset to the default settings.

Reference Guide 84 Document #: LTRT-13180



4.2.5.2 NSCASR_Log_InfoSet

Description

This function sets the name of the audio logged file of the next recognition sessions
and also sets application information to be added to the textual log file. It should be
called before each recognition operation (before NSCASR_Recognize() is called).

Syntax
NSC_ERR_TP NSCASR_Log_InfoSet

(const NSC_HEADER_ST *pHeader,

short sResourcelD,

const NSCASR_LOG_INFO_ST *plnfo,

const char *pstrWaveformFileName);
Input
*pHeader Defines the pointer to the NSC Header

Structure (see Section 4.1.7.3).

sResourcelD Defines the NSCServer resource ID.
*plInfo Defines a pointer to a

NSCASR_LOG_INFO_ST (see Section 4.2.6.6)
that contains the information to be written
to the textual log file.

*pstriaveformFileName Defines the name of the audio file in which
the next recognition session will be saved.

Output
Null

Returned Values
NSC_ERR_TP (see table in Section 4.2.9)

Include Files:

nscasr.h, nscasr_err.h

Version 1.0 85 AC Voca for Windows



QC audiocodes

Supported Modes (Synchronous/Asynchronous):
Both

Relevant to (NSC Speecher/NSC Spotter/Both):
Both

Notes:
B The function has two optional functionalities (at least one must be operated):

o Enable extraction of textual log information (per recognition) with given
application information.
e Set the name of the logged audio file.

B If only *pinfo is set to NULL then no textual log file will be created for this
recognition session.

B If only *pstrWaveformFileName is set to NULL the engine will save the audio
logging of the session using thedefault naming convention, defined by NSC
Speecher/Spotter (refer to the NSC Speecher/Spotter User’s Manual).

B The extension type of the prompt (reference) PCM sample recording will be
sru (u-law), sra (a-law), or srl (linear PCM).

B If both *pinfo and *pstrWaveformFileName are NULL the function will return
with a NSC_WRONG_USAGE error (see Section 4.1.11).

B The extension type of the main PCM sample recording will be smu (u-law),
sma (a-law), or sml (linear PCM).




Reference Guide 4. Function Definitions

4.2.6 NSC ASR API Structures
4.2.6.1 NSCASR_ACQ_PARAMS_ST

NSCASR_ ACQ_PARAMS_ST

(Acquisition Parameters Structure)

Member Name Type Description

NewAudioChannel NSC_FLAG_TP Indicates if this is a new audio channel
(call)

StartTimers NSC_FLAG_TP Activation/Deactivation of timers (see
Section 4.2.2.2)

SaveWaveform NSC_FLAG_TP Activation/Deactivation of audio PCM
logs

usNolnputTimeout unsigned short 'No Input Timeout'

usSpeechlncompleteTi unsigned short 'Speech Incomplete Timeout'

meout

usSpeechCompleteTime unsigned short 'Speech Complete Timeout'

out

usRecognitionTimeout unsigned short 'Recognition Timeout'

usECMode unsigned short Echo Cancellation operational mode

sSNRThreshold Short Signal to Noise Ratio threshold

This structure is wused to pass acquisition parameters when calling
NSCASR_Recognize().

Version 1.0 87 AC Voca for Windows



QC audiocodes

4.2.6.2 NSCASR_RCG_PARAMS_ST

NSCASR_ RCG_PARAMS_ST

(Recognition Parameters Structure)

Member Name Type Description
AcgParams NSCASR_ACQ_PARAMS = Acquisition parameters (see Section
ST 4.2.6.1)
usSpeedVsAccuracy unsigned short For future use TBD (0- 10)
usSensitivityLevel unsigned short Sensitivity level (0-100)
usConfidenceThreshold unsigned short Confidence threshold (0-100)
usNumBestAlternatives unsigned short Number of alternative phrases

This structure is used to pass recognition parameters when calling
NSCASR_Recognize().

4.2.6.3 NSCASR_RCG_ITEM_ST

NSCASR_ RCG_ITEM_ST

(Recognized Item Structure)

Member Name Type Description
pstrSlotName char Name of the slot of the recognized
item.
pstrReportedText char Reported text for the recognized item.

Please refer to the NSCGrammar
User’s Manual.

usConfidence unsigned short Confidence level of the recognized
item (0- 100).
ulLocation unsigned long Location of the recognized item in the

recognition input buffer from start of
recognition, in units of frames.
ulDuration unsigned long Duration of the recognized item, in
units of frames.
This structure represents a recognized item.

Note that each string in pstrReportedText and pstrSlotName is defined as a NULL
terminated string.




4.2.6.4 NSCASR_RCG_PHRASE_ST

NSCASR_RCG_ PHRASE _ST

(Recognized Item Structure)

Member Name Type Description
usConfidence unsigned short Confidence level of the whole phrase
(0- 100).
usNumltems unsigned short Number of recognized items in the
phrase.
ltem[1] NSCASR_RCG_ITEM_ST | Array of the recognized words (see

Section 4.2.6.3)

This structure represents a recognized phrase consisting of one or more items.

4.2.6.5 NSCASR_RCG_RES_ST

NSCASR_RCG_RES_ST

(Recognition Results Structure)

Member Name Type Description

ulSizeBytes unsigned long The size in bytes of the results data

ulWarnings unsigned long Includes the acquisition warnings (see
Section 4.2.9)

usNumPhrases unsigned short Number of phrases in the recognition
results

pstrWaveformURI char* The name of the logged waveform file

pPhrase[1] NSCASR_RCG_PHRASE_ = Array of pointers to alternative

ST phrases in descending order
This structure is used to report the recognition  results

when NSCASR_Recognize_ResultsGet() is called.




Q’: OUdiOCOdeS AC Voca for Windows

4.2.6.6 NSCASR_LOG_INFO_ST

NSCASR_ LOG_INFO_ST

(Log Information Structure)

Member Name Type Description
strinfo Char[64] Free text for application information
to add to textual log file
sApplScriptld unsigned short Application Script ID
sApplStateld unsigned short Application State ID

This structure is used by the application to pass information to the textual
recognition logs when NSCASR_Log_InfoSet() is called.

Reference Guide 90 Document #: LTRT-13180



4.2.6.7 NSCASR_GRAMMAR_LIST_ST

NSCASR_ LOG_INFO_ST

(Log Information Structure)

Member Name

sCount

sindex

short[1]

Description

Number of grammars in the list

Array of the grammar indexes

This structure represents a list of grammars (using their unique grammar indexes).

4.2.7 NSC ASR API Event Codes

Name

Event Codes
Recognition events

NSCASR_EVENT_RECOGNIZE

NSCASR_EVENT_RECOGNIZE_TIMERSSTART

NSC ASR generated events
NSCASR_EVENT_SPEECH_DETECTED

NSCASR_EVENT_CONTENT_SPOTTED

Grammar Events

NSCASR_EVENT_GRAMMAR_ACTIVATE

NSCASR_EVENT_GRAMMAR_DEACTIVATE

NSCASR_EVENT_GRAMMAR_ACTIVEGET

NSCASR_EVENT_GRAMMAR_LOAD

Value

401
402

1101

1102

403

404

405

406

Description

Event retuned at the end of recognition

Speech was detected on the channel during
the recognition

Relevant speech has been detected on the
channel

Event returned after
NSCASR_Grammar_Activate() finished
running asynchronously

Event returned after
NSCASR_Grammar_DeActivate() finished
running asynchronously

Event returned after
NSCASR_Grammar_ActiveGet()
finished running asynchronously
Event returned after

NSCASR_Grammar_Load() finished running
asynchronously




QC audiocodes

AC Voca for Windows

Name Value Description

NSCASR_EVENT_GRAMMAR_VOCABULARYLOAD 407 Event returned after
NSCASR_Grammar_VocabularyLoad()
finished running asynchronously

NSCASR_EVENT_GRAMMAR_REMOVE 408 Event returned after
NSCASR_Grammar_Remove() finished
running asynchronously

Logging Events

NSCASR_EVENT_LOG_INFOSET 409 Event returned after NSCASR_Log_InfoSet()
finished running asynchronously

NSCASR_EVENT _LOG_WAVEFORMPATHSET 410 Event returned after
NSCASR_Log WaveformPathSet()
finished running asynchronously

Parameter Management Events

NSCASR_EVENT_PARAMETER_SET 411 Event returned after
NSCASR_Parameter_Set() finished running
asynchronously

NSCASR_EVENT_PARAMETER_GET 412 Event returned after
NSCASR_Parameter_Get() finished running
asynchronously

Reference Guide 92 Document #: LTRT-13180



4.2.8 NSC ASR API Constants

Name Value Description

General Definitions

NSCASR_ACTIVE_GRAMMAR_INDEX 20100 Index for recognition with activated
grammars

Parameters Definitions
NSCASR_PARAM_NEWAUDIOCHANNEL 401 Indicates a new audio channel (call)

NSCASR_PARAM_STARTTIMERS 402  Allows the activation of
timers during recognition. (see
Section 4.2.2.2)

NSCASR_PARAM_NOINPUTTIMEOUT 403  No input time out
NSCASR_PARAM_SPEECHINCOMPLETETIMEOUT 404  Speech incomplete time out

NSCASR_PARAM_SPEECHCOMPLETETIMEOUT 405  Speech complete time out
NSCASR_PARAM_RECOGNITIONTIMEOUT 406  Recognition time out
NSCASR_PARAM_ECMODE 407  Echo cancellation
activation/deactivation
NSCASR_PARAM_SNRTHRESHOLD 408  Signal to Noise ratio threshold
NSCASR_PARAM_SAVEWAVEFORM 409 Activate/Deactivate audio recording
logs
NSCASR_PARAM_SPEEDVSACCURACY 410 Speed Vs. Accuracy — not active in
current version
NSCASR_PARAM_SENSITIVITYLEVEL 411  Sensitivity level of the recognition
NSCASR_PARAM_CONFIDENCETHRESHOLD 412  Confidence threshold
NSCASR_PARAM_NUMBESTALTERNATIVES 413  Amount of alternative phrases

NSCASR_PARAM_OPERATIONMODE 413  Special operational modes




QC audiocodes

429 NSCASRAPI Error Codes
NSC_ERR_TP
(Function Error Return Codes — As defined in
Nsc_err.h)
Name Value Description

All values are NSCASR_ERROR_OFFSET(1400) + the value stated

NSCASR_GRM_LIMIT 1 Number of grammars exceed the
maximum allowed

NSCASR_GRM_INVL 2 Invalid grammar

NSCASR_GRM_IDX_INVL 3 Invalid grammar index was
provided

NSCASR_GRM_IDX_IN_USE 4 The grammar index provided is
already in use

NSCASR_GRM_TOO_LONG 5 Grammar exceeds the maximal
speech duration set in the current
recognition session.

For example: Known length 20-
digits grammar has a limitation of 2
seconds.

NSCASR_VOC_INVL 101 Attempt to load a vocabulary of
different language than the loaded
grammar.

NSCASR_VOC_NOT_SET 102 One or more vocabulary lists are
not set

NSCASR_VOC_NAME_MISMATCH 103 Vocabulary name does not match
any name in the grammar

NSCASR_VOC_CAUSE_OPEN_LOOP 104 Vocabulary with no words (causes
an open loop in the grammar)

NSC Acquisition warnings (bit location)

NSCASR_LOW_SNR Ox1L SNR is below SNR threshold

NSCASR_NO_SPEECH 0x2L No speech was detected

NSCASR_TOO_LOUD Ox4L Detected speech too loud at
acquisition

NSCASR_TOO_SOFT 0x8L Detected speech too soft at
acquisition

NSCASR_TOO_LONG 0x10L Detected speech too long




Reference Guide 4. Function Definitions

NSC_ERR_TP
(Function Error Return Codes — As defined in
Nsc_err.h)
Name Value Description
NSCASR_TOO_EARLY 0x20L Detected speech starts too early
NSCASR_TOO_SHORT 0x40L Detected speech too short for
recognition using the selected
grammar

NSCASR_NO_MATCH 0x80L Detected speech too short for
recognition using the selected
grammar

Log waveform warnings (bit location)

NSCASR_LOG_WAVEFORM_CORRUPT 0x100L  Waveform data has been
overwritten

Version 1.0 95 AC Voca for Windows



mOUdiOCOdeS AC Voca for Windows

This page is intentionally left blank.

Reference Guide 96 Document #: LTRT-13180



Reference Guide A. References

A References

B NSC Speecher/Spotter User’s Guide - Overview of the NSC engines:
environment, concepts and usage.

B NSCGrammar APl Manual - Definition of the Application Programming
Interface to the NSCGrammar (Refer to this manual for details of run-time
vocabulary functions).

Version 1.0 97 AC Voca for Windows



International Headquarters
1 Hayarden Street,

Airport City

Lod 7019900, Israel

Tel: +972-3-976-4000

Fax: +972-3-976-4040

AudioCodes Inc.

27 World's Fair Drive,
Somerset, NJ 08873
Tel: +1-732-469-0880
Fax: +1-732-469-2298

Contact us: https://www.audiocodes.com/corporate/offices-worldwide

Website: https://www.audiocodes.com

©2018 AudioCodes Ltd. All rights reserved. AudioCodes, AC, HD VoIP, HD VoIP Sounds Better, IPmedia, Mediant,
MediaPack, What's Inside Matters, OSN, SmartTAP, User Management Pack, VMAS, VolPerfect, VolPerfectHD, Your
Gateway To VoIP, 3GX, VocaNOM, AudioCodes One Voice and CloudBond are trademarks or registered trademarks of
AudioCodes Limited. All other products or trademarks are property of their respective owners. Product specifications
are subject to change without notice.

Document #: LTRT-13180

QX audiocodes


https://www.audiocodes.com/corporate/offices-worldwide
https://www.audiocodes.com/

	Reference Guide
	Table of Contents
	Notices
	WEEE EU Directive
	Customer Support
	Abbreviations and Terminology
	Document Revision Record
	Related Documentation
	Documentation Feedback

	1 Introduction
	2 Getting Started
	2.1 Purpose
	2.2 Terms and Definitions

	3 API Files 
	3.1 NSC API Files
	3.2 NSC ASR API Files

	4 Function Definitions 
	4.1 NSC API
	4.1.1 Initialization/Termination Functions
	4.1.1.1 NSC_Init
	4.1.1.2 NSC_Version_Get
	4.1.1.3 NSC_Terminate

	4.1.2 Server Management Functions
	4.1.2.1 NSC_Server_Find
	4.1.2.2 NSC_Server_Add
	4.1.2.3 NSC_Server_Remove
	4.1.2.4 NSC_Server_InfoGet

	4.1.3 Event Management Functions
	4.1.3.1 NSC_Event_Get
	4.1.3.2 NSC_Event_Put

	4.1.4 Resource Management Functions
	4.1.4.1 NSC_Resource_Get
	4.1.4.2 NSC_Resource_Free
	4.1.4.3 NSC_Resource_Abort
	4.1.4.4 NSC_Resource_InfoGet

	4.1.5 Audio Channel Management Functions
	4.1.5.1 NSC_Resource_AudioChannelSet
	4.1.5.2 NSC_Resource_AudioMainStream
	4.1.5.3 NSC_Resource_AudioPromptStream

	4.1.6 RTP Management Functions
	4.1.6.1 NSC_RTPSession_Open
	4.1.6.2 NSC_RTPSession_Close
	4.1.6.3 NSC_Resource_RTPChannel_Set
	4.1.6.4 NSC_Resource_RTPChannel_Reset

	4.1.7 NSC API Structures
	4.1.7.1 NSC_DATA_ST
	4.1.7.2 NSC_EVENT_DATA_ST
	4.1.7.3 NSC_HEADER_ST
	4.1.7.4 NSC_SERVER_INFO_ST
	4.1.7.5 NSC_SERVER_INFO_LIST_ST
	4.1.7.6 NSC_RESOURCE_INFO_ST
	4.1.7.7 NSC_PARAM_ST
	4.1.7.8 NSC_PARAM_LIST_ST
	4.1.7.9 NSC_RTP_SESSION_ST

	4.1.8 NSC API Types
	4.1.9 NSC API Event Codes
	4.1.10 NSC API Constants
	4.1.11 NSC API Error Codes

	4.2 NSC ASR API
	4.2.1 Initialization/Termination Functions
	4.2.1.1 NSCASR_Init
	4.2.1.2 NSCASR_Version_Get
	4.2.1.3 NSCASR_Terminate

	4.2.2 Recognition Functions
	4.2.2.1 NSCASR_Recognize
	4.2.2.2 NSCASR_Recognize_TimersStart
	4.2.2.3 NSCASR_Recognize_ResultsGet

	4.2.3 Grammar Management Functions
	4.2.3.1 NSCASR_Grammar_Load
	4.2.3.2 NSCASR_Grammar_Activate
	4.2.3.3 NSCASR_Grammar_DeActivate
	4.2.3.4 NSCASR_Grammar_ActiveGet
	4.2.3.5 NSCASR_Grammar_VocabularyLoad
	4.2.3.6 NSCASR_Grammar_Remove

	4.2.4 Parameters Management Functions
	4.2.4.1 NSCASR_Parameter_Set
	4.2.4.2 NSCASR_Parameter_Get

	4.2.5 Logging Functions
	4.2.5.1 NSCASR_Log_WaveformPathSet
	4.2.5.2 NSCASR_Log_InfoSet

	4.2.6 NSC ASR API Structures
	4.2.6.1 NSCASR_ACQ_PARAMS_ST
	4.2.6.2 NSCASR_RCG_PARAMS_ST
	4.2.6.3 NSCASR_RCG_ITEM_ST
	4.2.6.4 NSCASR_RCG_PHRASE_ST
	4.2.6.5 NSCASR_RCG_RES_ST
	4.2.6.6 NSCASR_LOG_INFO_ST
	4.2.6.7 NSCASR_GRAMMAR_LIST_ST

	4.2.7 NSC ASR API Event Codes
	4.2.8 NSC ASR API Constants
	4.2.9 NSC ASR API Error Codes


	A References 


