APl Reference Guide

AudioCodes WebRTC Solutions for Enterprises

WebRTC iOS Client SDK

Version 1.3.7

QX audiocodes

Contents WebRTC iOS Client SDK

Table of Contents

NOTIC. cteuiiiriiiiiiiiiriiiir et rr s e e st ras s raas st raesssensssrensssrassssrnssssnsssssnssssenssssenssssnnes vii
CUSTOM T SUP PO eeaeens vii
Stay in the Loop With AUAIOCOTES.......cccicuiiiiecciiee e e e e e e e e aree e e e vii
Abbreviations and TErMINOIOZYcccuuiiiiiiiiee et e e e e e e nree e e eanees vii
Related DOCUMENTAION. .. .ciiiiiiiiie ettt e s e s e s b e e sabeesbeeesareeaas vii
Document REVISION RECOITiiiiiiiiiieiiie ettt ettt et e e stae e st eebae e sabeesbaeensseesnbeeenaseenns Vii
Documentation FEEADACK........couuii e ix

R 11 oY ¥ ot oo 1
I O S U1 o T 1] J PP P PP PP PPPPPPPPPPPPPPPPPPPRt 1
1 Y ol o1 PPPPPPPRE 1
IR N 1T VY £ (SRR 1

7 {0 130 0 (Ot 2
2 N G- oY=] = o (= o U PRRR 2
D2 A 1115 - | = o T o PSPPSR 2
2.3 USQEE NOTES. ..t nan 3
2.4 Bitcode SUPPOIt DEPIrECAtION ..ciiiiiiieietieee ettt ettt et e et e e e e tre e e s sbae e e e ebaeeeeeraeeeeanns 4
D2 T V| PSSR 4
2.6 CallKIt FramMEWOIK co.eviiiiie ettt et et e et e st e e eaeeessseeentaeensaeeennaeesnseeans 4
2.7 PUSH NOTIICAtIONS. c.eeeiiiii ittt ettt e sttt e st e e sabeesbaeesareeeas 5
2.8 APP EXEENSIONS .. s 5

B Y I 0 =T - 6
I A AU Te [To T 0o o {1 U N USSP SRI 7

3.1.1 Standard Methods / PrOPEItiS.......ccuiiiiieiiree e eeieeeetee ettt et e tee et e e etre e ae e etre e saeeeareesaaeeeanees 8
0t 0t 0t R - {= o 1 [= o Lol PP P PP PP PPPPPPPPPPPPPPPPPPRE 8
3.1.1.2 SEESEIVEICONTIZ woiieeiiee et et e e et e e et e et e e e earaae s 8
3.1.1.3 SEEACCOUNT .ottt e 8
3.1.1.4 id <AudioCodesEventListener> delegate........cccccveeeriiieeeiiiie e 9
3.1.1.5 10giN:(BOOL)AULOREEISTEN ...cuvviieiiiieeeciiee ettt et e et e e ate e e eareae s 9
701 00 Y SR (-4 OO ROTPP PP PR OPPRPPRRON 10
3.1.1.7 10gOUL:(BOOL)OrCECIOSE . ceeeuuiiieeiieee et eette e ettt et et e e e eara e e e eanes 10
700 001 < T o Yo 1 U USRS 10
2R 001 R o | | ORI 11
0 00 0 O Y T o To | [1 =Y 1Y (Y- =TSSR 11
3.1.2 Advanced Methods / PrOPEITIEScccuveecueeiireeeeieeceteeeetee et e eeteeeeteeeve e eeteeeteeeeteeereeereeereeens 11
3.1.2.1 SipHeadersDictionary* registerExtraHeadersccceeevvveeeceieeecriee e 11
3.1.2.2 SipHeadersDictionary* inviteExtraHeaders........ccceeecuveeeeciiic e 12
3.1.2.3 NSStINE™ USEIAZENT..ciiiiiieeeciie e cciee e ee ettt e e rre e e e e e et e e e saaeeeesareeeennaeeennnees 12
3.1.2.4 BOOL verifyServerCertificate.......coooeiieeiiiiiieeee e 12

Contents WebRTC iOS Client SDK
3.1.2.5 NSString™® caCertFilePath..........cooouiie i 12
3.1.2.6 BOOL CONTACIREWIITEeveiiiiiiiecieec e s 13
3.1.2.7 BOOL disconnectONBrokenConneCtion.........covecveeeieriericneenieneeieeieeeeeieesiens 13
3.1.2.8 INETEBEXPITES .ttt e s s 13
3.1.2.9 BOOL USESESSIONTIMEN ..uviiiiiiiiiiiiiiie ittt 13
3.1.2.10 ACLOELEVEIIOZLEVELeeiiiiieeie et 14
3.1.2.11 id<ACLOEEEIrProtoCOI> IOZEEN ...cccceiieeiiiieeeiie ettt et 14
3.1.2.12 handleNetWOrkChange.......cccueiiiiiiieiiieeee e 14
3.1.2.13 setConnectioNBIiNdINGcceeiiiiiiiiiie et ra e e 15
3.1.2.14 NSArray <AudioCodesSession*>* SESSIONScccueeeeiureeeecirieeeeiiieeeeeieeeeeveee e 16
3.1.2.15 setPUShNOTIFICAtiON .eo.veviieiieiieic e 16
3.1.2.16 SEtOAULNTOKEN ..eiiiiiiiiietee e s 16

3.2 AUIOCOESSESSION .ueeiiiiiiiieitie sttt ettt ettt ettt st ettt e sbe e sat e st et e bt e sbeesbeesaeeenteeeeen 17
3.2.1 Standard Methods / PrOPEItIES......iiiuiceie ettt sve e v e s be e e re e e beesareeeas 18
3.2.1.1 INT SESSIONID; .uuiiiiiiiiiiiit s nannnnnnnnnnnn 18
3.2.1.2 ANSWET ciiiiiiiiciic et e e 18
0t . T = 1T o1 PSP PP PPPPPP 18
3.2.1.4 Terminate cuiiiiiiiiiiiic i e 19
3.2.1.5 BOOL muteAudio (getter=isAUdioMULEd)cccvueririreiieiirie e 19
3.2.1.6 BOOL muteVideo (getter=isVideoMuted)ccceeeiiieiieiiiiee e 19
20 B YT o To | B 11 PSP 19
3.2.1.8 BOOL iSOULEOINEG ..vvvvrrririririiirireritirittrttterstrsereeeeeeeereeeereeereeere... 19
3.2.1.9 2100]I s T TV T =Y o RSP PURRRN 20
3.2.0.10 CallSEAte...eieeetieieet ettt e bbbt et ettt naeen 20
3.2.1.11 TerminationInfo terminationINfocceevieriiiiiiii 20
3.2.1.12 NSINTEGEr dUIatioN oo e e e e e e e e rareeaeeeean 20
3.2.1.13 BOOLISLOCAIHOI. . .eeiiiiiieiiieiieieee ettt 21
3.2.1.14 BOOLISREMOLEHOIceeiiiiiiiiieiicie e 21
3.2.1.15 BOOL isDelayedOffar....c.uiiieeiiee et et e 21
3.2.1.16 0d USEIDATA «.eouvieiiieiiiereeee et 21
32,007 NOId.eeiiee e e bbbttt et nbeen 22
3.2.1.18 SWItCHCAMEIA ceueieiiiie ettt sttt sttt 22
3.2.1.19 (void) showVideolocalView:(UIView*)localView
remoteView:(UIView*)remoteView completion:(ACTaskCompletion)completion 22
202 0 O B o o VT [T TSP RR 23
3.2.1.21 id<AudioCodesSessionEventListener> delegate.........cccccceeeeviiieieeeieeniciiiieeeee, 23
3.2.1.22 RemoteContact *remoteNUMDErcccccveriiiiiiiiieceeeee e 23
3.2.1.23 transferCall (Blind Transfer)ooociie it 24
3.2.1.24 attendedTransferCall (Attended Transfer)coveeciieeeiee e 24
3.2.1.25 RemoteContact *transferContactccoeceereerieiiiienie et 25
3.2.1.26 CallTransferState transferStateccocveeeieiieiice e 25
3.2.1.27 NSUUID *CallUUID ..veievieiiiieiiesiee ettt eiee st e ettt e esaeesbaeesaeeebaeenneeennes 26

Contents WebRTC iOS Client SDK
3.2.1.28 SENAINTO ..ttt et 26

3.3 WeEDbRTCAUAIOMANAZETiiiiiiiiieeeiiee ettt e et e e e e e et e e e e e e e e e b ae e e earaeeeennbaeeeenarees 27
3.3.1 Notes 0N i0S AUAIO ROULING ...eeiiuviieeiiiie ettt ettt e et e e et e e e st e e e e ara e e seaaaaeesnaaeeeas 27

3.3.2 NOtes 0N USING CallKit ..c...eiiieeiiiieiieiie et sttt 27

3.3.3 Standard Methods / PrOPEITIES.c.ucicuiieiee ettt ettt te e e b e eteeebe e e beeereeens 28
3.3.3.1 etINSTANCE it s 28

3.3.3.2 id <WebRTCAudioRoutesListener> delegate..........cceevveevireeeireeeireeecee e 28

3.3.3.3 SELAUIOROULE ...ceiiiiieiiect e s 28

IR T8 T - =1 71 Y0 [[o] 2o 1V Y USSR 28

3.3.3.5 getAvailable AUIOROULESueiiiciiie ettt 29

3.3.3.6 overrideAudioROULETOSPEAKETvviiiiiiieeeiie e 29

3.3.3.7 routeAudioTOENabIeBIUETOOh ...cc.couiiiiiiiiiciicceceee e 29

3.3.4 Manual AUdio MANAZEMENT ..cc.viiiiieiiiieiie ettt sttt sttt sb e s e sbeesanee e 30
3.3.4.1 BOOL USEMANUAIAUGIO ...ooueiiieiieiieie ettt 30

3.3.4.2 BOOL QUAIOENGDIEM.iiiiiiiiiieiiieeec e 30

3.3.4.3 SetACtiVERAUdIOSESSION ..c.viiiiiiiiiiiiierteceee e 30

3.3.4.4 cONfIGUrEAUTIOSESSIONviiiiieiiiie ettt 31

3.3.4.5 audioSessioNDIdACTIVALEccceirciiiiiiiiiieeece e 31

3.3.4.6 audioSessioNDIADEACEIVALEc.cuuiiiieriieeee e 31

S N @(@o] o 41U T =T o [PPSR SPR 32
3.4.1 Standard Methods / PrOPErti€s......cccuierieireeieieiesieseeste st eeeeeese e ste e sseeteeneesseneesesseseesnas 32
o S Y- =1 { @o T4 Y 1 7={ U =Y d o P TP 32

3.4.1.2 NSSEFNG FVEISION c.utiiiiiiiieiie sttt ettt st st sae et et esaeesreens 32

3.4.1.3 Nt 10CAISErVEIrPOIt ...ccuviiiiiiieeeeet e 32

3.4.1.4 DTMFOpPtions® dtmMfOPLIONSccocuiie i e 33

3.4.1.5 VideoConfiguration® videoConfiguration.........c.ccccveveieeeeiiiiesniiee e 33

3.5 Video ConfigUration ...coccuiieeiciiie et e e e e ae e e e arees 34
3.5.1 Camera Parameters.....ccccciiiiiiiiiiiiiiiiiic i e 34

3.6 DTIMIFOPTIONS 1eetiiiiieiieeieiiiiiite et e e ettt e s e st e e e e s s s s abbteeeeeeesesssssbeseeaeessssssssbesaeeaesssnnnsnns 34
3.6.1 DTIMEF Parameters. . ..o ittt e e 34

3.7 RemMOteCONTACT.....cciiiiiiiiiiiiiic 35
3.7.1 Standard Methods / PrOPEITIES.c.uiicviieciee e ciee ettt et e e eveeeeteeeebeeebeeeebeeeareeens 35
3.7.1.1 NSString *displayNameccccciiieieiiie e see e e e s ee e e e e e e 35

3.7.1.2 NSSErNG FUSEINAME ..ooitiieieiiie ettt e e et e e e et e e e ear e e e e areeeeeasaeeeennes 35

TR0 . T VS € = dale Fo Y - 1o SRR 35

3.8 ACAICItINTOATEIDUTES ..ot st 36
3.8.1 Standard Methods / PrOPEITIES.c.ucicuiieieieciee ettt ettt sre e e be e e beesbeesreeereeens 36
3.8.1.1 BOOL QUEOANSWET w..oviiiitiiiiiitiie ittt s 36

3.8.1.2 NSINTEEEI AEIAY teiiieeeiieeiiiie ettt e e e e e et e e e e e e st e e e e ara e e ennees 36

3.9 ACNetworkConnectionATLIDULESccueiiiiiieiier e 37
3.9.1 Standard Methods / PrOPEITIES.c.ueiiiieceiecteeeiee ettt et e et sve e b e e beesreeereeearee e 37
3.9.1.1 ACNetworkAddressFamily localAddressFamilycccccceeeeiiiiiiiiieeiiciiiiieeeee, 37

-iv -

Contents WebRTC iOS Client SDK
3.10 TerminationInNFO. . e e s 38
N 08 A o o o T=T o 1 =T PP PPPTPROPR 38
3.10.1.1 CallTermination terminationccccvecuirierieneeiieeeie et 38
3.10.1.2 NSInteger SipStatUSCOUEccueiiiiiiiieiieeeee et 38
3.10.1.3 NSString *SipStatUSTEXT. . .eeeeiiiieeeiiieeciiee e ettt eree et e e et e e e rar e e e s areeeeanaeeeeneees 38
3.10.1.4 NSString *sipReasonHeaderValUecocveiieiiieniiiiienie ettt 38
3.10.1.5 NSSLriNg *SIPIMIESSAZE ...uvvreeeieiiieeeiieeesiieeeeitee e e sre e e streeeesaraeeseaaaaeesareeeenssaeeennsees 38
3,11 ACNQALIVECAIISEIVICE ...ttt ettt e ne e 39
3.11.1 Class Type DefinitioNSoiveiiiiiiieiiieeie ettt sttt 40
3.11.1.1 typedef NS_ENUM (NSInteger, ACCallKitExecutionBlockResult)cc........... 40
3.11.1.2 typedef ACCallKitExecutionBlockResult (*ActionExecutionBlock)(void); 40
3.11.1.3 typedef void (*ACCallKitTaskSetupCompletion)(NSArray * _Nullable
actionUUIDs, NSError * _NUIAbIe €rror)ccuuee et 40
3.11.2 Standard Methods / PrOPErtis......cccuierieireeieieieieseeste st eteeeeste e ste e saeeteeneenseneensesseseennas 41
3.11.2.1 ShAredINSTANCEeeutieiiiiieiie sttt ettt sttt ettt 41
3.11.2.2 BOOL USINGCAIIKIT ...evvereiieieeeiiiee et ee e ciee et e et e et e s saae e e sereeeennneeennnees 41
3.11.2.3 BOOL callGroupSUPPOITEAeeeeuiieeeiiiie ettt et e 41
3.11.2.4 initiateWithConfiguration:(CXProviderConfiguration*)configccccceovveueennee. 42
3.11.2.5 INVAIAATE .ottt 42
3.11.2.6 reportNewInCOMINGCAllcouiiiiiiiiieeiee e 43
3.11.2.7 reportCallTerminatedccoouiiieeiiie e et 43
3.11.2.8 reportCallUpdated......c.cooiii e 44
3.11.2.9 reportCallStartedCoNNECLING......cccuviieiiiieeeeciie ettt 44
3.11.2.10 reportCallEStabliShedcoceeiiiiiiieiee e 44
3.11.2.17 initiateStartCall......c.oo i e 44
3.11.2.12 initiat@ANSWEICAIl ..oiiiiiiiiieie e e 45
3.11.2.13 initIateENACAll c.eeeeiieeeee e 45
3.11.2.14 initiate@HOIACAIl ...eoiiieeieee e e 46
3.11.2.15 initiateMUtECall...c...ei i 46
3.11.2.16 initiateSeNdDTMFCAIlcocuiiiiiiiiiieiecee e 46
3.11.2.17 isCallAssociatedWiIthNatiVec.eeeriieriiieie e 47
4 API Callbacks / Delegate Protocols / NOtificationscccceeererererereresesessssresersnnenennes 48
4.1 AudioCOAESEVENTLISTENETeoiiiiiiieiieieetecre et 48
4.1.1 Login State Changed EVENT........uiiiiiiie et 48
A [o Voo T a1 q Y= OF: | LI V=T o | SR 48
4.1.3 Incoming INstant MesSage EVENT .ccooeeeiiiiiii e, 48
4.1.4 Outgoing Instant Message Status Update......cccccueeeeieeieiiiiee e e e e 49
4.2 AudioCodesSesSIONEVENTLISTENENcceiiiiriiiiiiiieie et 49
4.2. 1 callTErMINAE ..oveiiieiicreeeee e e sttt 49
o A o1 || ¢ oY= d ¢ YU PRTROP 49
e S o= Y| 1N 11 Y V7Y o TSR 50
424 CamMEraSWILCNE ..cc.iiiiiieiieee et 50

Contents WebRTC iOS Client SDK
S | o Tolo T2 oY= g ¥ o NSRS 51

4.3 WebRTCAUIOROULESLISTENET cuviiiiiieciie ettt ettt e rae e st eeae e e sabeesnees 52
e TR - 1¥ o [oY 2 e YU N {1 0l o =T V= <Y SRR 52

4.3.2 currentAUdiOROULECNANEEM ...ooviiiiiieiie et 52

2 N) Lo] 1 Tor= Y 4 o [PPSR 52
4.4.1 AudioCodesSession NOtIfiCatioNScccuiiiiiuiiiiiiiiee e e e s 52

4.42 WebRTCAudioManager NOtifiCationscooueiiiieniiiiieieee e 53

5 Use Case EXAMPIES...cccciiiuiiieeiiiiniiiiniiieniiiiniiiesinineieisnisisnssssssssssnssssssssssnsssssnsssssnssns 54
5.1 User Agent: Create Instance, Set server and ACCOUNTuvveeeeeiiiiiiiiiiieeee e e e 54
5.2 User Agent: Set Listeners (Callbacks)cccueeeeiieiiie et 54
5.3 User Agent Login: Connection to SBC Server and LOZiN........cccveeeiiiiieeciieee e 54
5.4 Make a Call, Set Call DEIEGATE ...ccceuveeieeiiie ettt e e e 54
5.5 Send DTMF DUFING Call....ooiiiiieieeee ettt et e e e e e ara e e e e nrae e e e enees 55
5.6 Mute / Unmute DUFING Call....c.oooiiiiiciecececce ettt ettt te e s b ebeere e 55
5.7 Accept Incoming Call (WIith VIAE0) ...cccveeeeiiieiiieciee ettt e 55
5.8 Delayed-offer: Treat incoming calls as video Callsccceeeeiiiieiiiiiie e, 55
5.9 ReJect INCOMING Call ..ciiuiiiiieeiiieeeee ettt e e e e e bee e e s abee e e e nbaeeeennsees 55
5.10 Terminate @ Callicuee ettt et et e et e e snte e et e e nt e e enaeesnbeeenees 55
LT R UL o} Y T [T TSRS 56
5.12 Using Built-In CallKit Support — ACNativeCallSErviceccuevurieeiiiiiee e 56
5.13 Using CallKit ManUAIlYooeiiiiieeiie et e e e e e e nra e e e e eanes 59
5.14 Responding to Remote Control Events — Genesys 3PCC APL........cccccvvveeeeeeeeicciiireeeee e 61
5.15 Push NOtIfiCations USE CASES ..cuueeriiiiiiieiriiieiiiesitte ettt ettt et e st e e st e st e e sateesbaeesabeesaes 63
5.15.1 Handling the Application Transition to Backgroundccccceviuieriieiriiienieeiiieeee e 63

5.15.2 Handling SIP Registration-Refresh Notificationsccccueeeeiiiiiiiiiiiee e 64
5.15.2.1 Using Background (“silent”) APNS notifications........c.ccoecevveereenieniienieeieeienieene 64

5.15.2.2 Using the Notification Service App EXLENSIONoeeevvieeeeiiiieeciiee e 65

5.15.3 Handling Incoming Call Notificationsccocueiiiiiriiiiieiiee e 69

5.16 Handling Audio Interruptions and GSM CallS........ccueeeeriiiieiiiiiie e 71
5.16.1 USING CallKIT..eiiueieititeiieeiee ettt sttt sttt st e s abeesbeesabeesabeesaree e 71

5.16.2 NOt USING CallKit...uuuiieiieiiieiiiiiiee et e et e e e e s raa e e e e e e s esaar e e e e e e e eennnnraeeas 72

5.17 Binding SIP CONNECLIONSuuiiiiiiei ittt et e et e e e e e e e sttt ee e e e e e e sssabaeeeeeaeesssnssteneeeaeesssnnnnes 73

-Vi-

Notices WebRTC iOS Client SDK

Notice

Information contained in this document is believed to be accurate and reliable at the time of
printing. However, due to ongoing product improvements and revisions, AudioCodes cannot
guarantee accuracy of printed material after the Date Published nor can it accept responsibility for
errors or omissions. Updates to this document can be downloaded from
https://www.audiocodes.com/library/technical-documents.

This document is subject to change without notice.

Date Published: May-12-2024

Customer Support

Customer technical support and services are provided by AudioCodes or by an authorized
AudioCodes Service Partner. For more information on how to buy technical support for AudioCodes
products and for contact information, please visit our website at
https://www.audiocodes.com/services-support/maintenance-and-support.

Stay in the Loop with AudioCodes

TN SN SN SN =N
(v) (F) (in) I\.l | B

A o .\'».__ _ __,-’; x\,__ ___.-’? S _.-/ l\- __.--/I

Abbreviations and Terminology

Each abbreviation, unless widely used, is spelled out in full when first used.

Related Documentation

Document Name

WebRTC-Gateway

WebRTC Softphone Client Quick Guide

WebRTC Client Installation Manual

WebRTC Click-to-Call Widget Installation and Configuration Guide

WebRTC Android Client SDK APl Reference Guide

WebRTC Web Browser Client SDK API Reference Guide

Document Revision Record

LTRT Description
14080 Initial document release for Version 1.0
14081 ® Updated to software Version 1.0.1.

m Updated additional information on SDK installation and usage.
m Updated the APl with the new “contactRewrite” function.

- Vii -

https://www.audiocodes.com/library/technical-documents
https://www.audiocodes.com/services-support/maintenance-and-support
https://www.audiocodes.com/solutions-products/products/session-border-controllers-sbcs/webrtc-gateway
https://www.audiocodes.com/media/14871/webrtc-softphone-client-quick-guide.pdf
https://techdocs.audiocodes.com/webrtc/client-install
https://techdocs.audiocodes.com/webrtc/click-to-call-widget
https://www.audiocodes.com/media/13259/webrtc-android-client-sdk-api-reference-guide.pdf
https://www.audiocodes.com/media/13433/webrtc-web-browser-client-sdk-api-reference-guide.pdf
http://www.twitter.com/audiocodes
http://www.facebook.com/audiocodes
http://www.linkedin.com/companies/audiocodes
http://www.youtube.com/user/audioserge
http://blog.audiocodes.com/

Notices

WebRTC iOS Client SDK

LTRT
14082

14083

14084

14085

14086

14087

14088

Description

Updated to software Version 1.1.0.

Blind Transfer:

e New function: transferCall:(RemoteContact*)remoteContact
e New property: transferState

e New property: transferContact

OAuth authorization — New function setOauthToken
Click to call support (calls without registration):

e New function — login:(BOOL) autoRegister

Push Support:

e New function: setPushNotifications

Support for Google WebRTC 1.0.27828

Support for Delayed Offer

Updated to software Version 1.2.0

Instant Messaging:

e New function: sendinstantMessage

Call Persistence on broken RTP Stream:

e New property: disconnectOnBrokenConnection
Attended Transfer:

e New function: attendedTransferCall

Support for IPV6

Full Bitcode Support

Minimum iOS Version required is 10.0

Updated to software Version 1.2.5

Updated Bitcode section

Added Swift section

Added CallKit Integration:

e Added ACNativeCallService API

e Added CallKit section

e Updated Installation section

e Updated WebRTCAudioManager class

e Updated WebRTCAudioManager Notifications section
e Updated Use Case Examples section; added CallKit use cases
Added TerminationInfo type

Added terminationinfo property to AudioCodesSession class
Updated to Version 1.2.7

Added TLS certificate verification API:

e Added verifyServerCertificate property

e Added caCertFilePath property

Updated to Version 1.2.8

Added the “Simulator Support With Xcode 12” section

ACNativeCallService: Added the isCallAssociatedWithNative method

Added the Genesys 3PCC API for remote control events:

e AudioCodesEventListener : Added the optional infoAlert parameter to the

incomingCall delegate callback

e AudioCodesSessionEventListener : Added the callNotifyEvent delegate callback
e Updated Use Case Examples section; Added Section for remote-control events
e Demo Client: Updated the implementation for the incomingCall delegate callback, to

handle the infoAlert parameter for auto-answering the call

e Demo Client: Added implementation for the callNotifyEvent delegate callback, to
handle incoming notify messages for remote-control functionalities to manage a call

(‘hold’ / ‘talk’ / ‘dtmf’)
Updated to Version 1.2.9
SDK format was updated from '.framework' to '.xcframework’

- viii -

Notices

WebRTC iOS Client SDK

LTRT
14089

14090

14091

14092

14093

14094

Description

Updated to Version 1.3.0

Updated minimum requirements to Xcode 12.5.1

Removed 32-bit support, architectures armv7 and i386 are no longer supported

Added Apple Silicon arm64 support, for running the simulator on Apple Silicon machines

Added Push Notifications APl support, updated the setPushNotifications API

Added Push Notifications Use Cases

Updated to Version 1.3.1

Added Delayed Offer Configuration Support:

e Added isDelayedOffer getter property to AudioCodesSession

e The showVideo method is now able to add video to delayed-offer incoming calls

e Added a use-case example of configuring an incoming delayed-offer call as a video
call

Updated to Version 1.3.3

Updated installation and usage notes.

Added handling audio interrupts and GSM calls.

Added SIP connection binding capabilities:

e Added method setConnectionBinding.

e Added an optional parameter to handleNetworkChange.

e Added new section for the ACNetworkConnectionAttributes type.

e Added “Binding SIP Connections”.

Updated to Version 1.3.4

Updated the AudioCodesEventListener section for SIP instant message:

e Added incominglnstantMessage and instantMessageStatus callbacks.

Added SIP INFO support:

e Updated the AudioCodesSession section: added the sendInfo method

e Updated the AudioCodesSessionEventListener section: added the incominginfo event
callback.

Updated to Version 1.3.5.

Updated minimum requirements to Xcode 14.1 and iOS 12.

Added the ACRTCIceServer and ACRTCIceServerFactory APls to the AudioCodesUA

section.

Logging:

e The SDK default logger now uses the recommended unified logging os_log function.

e The SDK default log level is now ’error’ instead of ’info’.

Removed Bitcode support:

e Updated the Bitcode Support section, which has now been changed to Bitcode
Support Deprecation.

e The WebRTC.xcframwwork bundle is now provided with the SDK, instead of
separately.

Moved the ACNativeCallService class, as well as all CallKit references, to a separate

optional framework in the SDK: MVWebRTCNativeCall.xcframework.

Updated to Version 1.3.7

Minimum requirements updated to iOS 13.4

New section 'Viewing SDK Logs' under Usage Notes

Documentation Feedback

AudioCodes continually strives to produce high quality documentation. If you have any comments
(suggestions or errors) regarding this document, please fill out the Documentation Feedback form
on our Web site at https://online.audiocodes.com/documentation-feedback.

- X -

https://online.audiocodes.com/documentation-feedback

1. Introduction WebRTC iOS Client SDK

1.1

1.2

1.3

AudioCodes Client SDK
Y

[=Jn

Introduction

WebRTC technology enriches the user experience by adding voice, video and data communication
to the browser, as well as to mobile applications. AudioCodes WebRTC gateway provides seamless
connectivity between WebRTC clients and existing VoIP deployments.

A typical WebRTC solution is comprised of a WebRTC Gateway, which is an integrated functionality
on AudioCodes SBCs, and a client application running on a browser or a mobile app. The AudioCodes
WebRTC iOS client SDK is based on Objective-c and allows iOS developers to integrate WebRTC
functionality into iOS applications for placing calls from the iOS device to the SBC.

Figure 1: Typical WebRTC Solution

" Customer Data Center

phone
Flain I Entij’pt:ffe :’mp
SIP o WebSocket ; or
OFUS o SRTP b Flain RTP 1&.

S8C with WebfTC Gateway

For a simple click-to-call button use case, a WebRTC widget is offered, which can be easily
integrated into websites and blogs without any JavaScript knowledge. Refer to the WebRTC
Widget Installation and Configuration Guide.

Purpose

This Reference Guide defines the Application Programming Interface (API) use of the Web Real-Time
Communications (RTC) SDK.

Scope

This Reference Guide describes the API that must be implemented to use AudioCodes' WebRTC iOS
SDK to build an iOS application. This application will interact with the AudioCodes' server to establish
voice and video calls.

This Reference Guide may be used by iOS developers who want to use the AudioCodes-provided SDK
to build WebRTC clients.

Benefits

Here is a summary of the benefits of using WebRTC:

Simple deployment - a single WebRTC gateway device is used for both signaling and media

Strong security and interoperability capabilities resulting from integration with SBC

[
[

m Client SDK for iOS application

m OPUS-powered IP phones for superb, transcoder-less voice quality
[

Optional recording of WebRTC calls

2.10S SDK

WebRTC iOS Client SDK

2.1

2.2

i0S SDK

Getting Started

The following provides the necessary requirements for working with the iOS SDK:

Xcode 14.1 or later
iOS device with minimum Version iOS 13.4
SDK is provided with the following framework bundles:

° MVWebRTCFramework.xcframework: This is the main WebRTC SDK framework bundle.
Its WebRTC media-related functionalities require the project to include
MVWebRTClInterface. On its own, it is extension-safe and can be used in app extensions,
mainly for push-notification use cases (See Section 5.15).

° MVWebRTClInterface.xcframework: This must be included with MVWebRTCFramework,
to utilize real-time media functionalities. It depends on the WebRTC.xcframework that is
also provided here.

e WebRTC.xcframework: This must be included with MVWebRTCFramework to utilize
real-time media functionalities.

° MVWebRTCNativeCall.xcframework: Optional framework containing the SDK APl and
functionality for using the iOS native telephony integration, i.e., CallKit. All the SDK
references to the iOS CallKit framework are contained in here. Applications that do not
wish to link to CallKit can simply exclude this framework from their project.

e iOS demo client project: This is the Xcode project which can be used as a reference. This
is a fully-working client and shows how to use the SDK.

Version 1.3.5, the SDK now includes WebRTC.xcframework as part of its core delivery.

‘ @ Until Version 1.3.4, the WebRTC.xcframework package has been delivered separately. From

Installation

The procedure below describes how to install the SDK.

To install the SDK:

1.
2.
3.

Install Xcode 14.1 or later.
Open a project for the demo client.

Verify that the iOS Deployment Target is Version 12.0. This is the lowest supported iOS
version.

Add all SDK Frameworks in the project settings, under General > Embedded Binaries.

Add the following iOS Frameworks, either as Linked Libraries (General > Linked Frameworks
And Libraries) or using the @import (swift “import”) directive in the code:

° libresolv.tbd

° SystemConfiguration.framework
° Security.framework

° CoreGraphics.framework

e CoreMedia.framework

° CoreVideo.framework

° CoreAudio.framework

2.10S SDK

WebRTC iOS Client SDK

2.3

e CFNetwork.framework

e AudioToolbox.framework

e AVFoundation.framework
° CoreFoundation.framework
o Foundation.framework

o UIKit. Framework

° CallKit Framework. Only required for using MVWebRTCNativeCall.xcframework
(Optional)

Usage Notes

1.

Background Modes: To allow VolP connection in the background, the following entries must
be added to the app's info.plist file:
<key>UIBackgroundModes</key>
<array>

<string>voip</string>

<string>audio</string>
</array>
Background State Transition: When the application transitions to the Background state, it
must call the logout() method in order to close the connection to the SIP server. It is strongly
advised to do so while initiating a UIBackgroundTask, which will be ended on the

loginStateChanged delegate method, indicating that logout has completed. See
Section 5.15.1.

Privacy: Usage of WebRTC for VolP purposes requires using the device's camera and
microphone, which require the user's consent. To fine-tune the privacy access request from
the user, the following entries should be added to the app's info.plist file:

<key>NSCameraUsageDescription</key>

<string>The Application requires camera access for full video
calls functionality</string>

<key>NSMicrophoneUsageDescription</key>

<string>The application requires microphone access for full
call functionality</string>

Platform Consideration (Device / Simulator): Every framework we provide, includes within it
multiple code partitions (slices), compiled for the following architectures:

° Device arm64

° Simulator x86_64

e Simulator arm64 (Apple Silicon)

This allows for the running / debugging of both device and simulator as needed.

Viewing SDK logs: By default, if no custom logger is defined for the SDK, the SDK uses the
unified-logging os_log functionality to print its log entries to the console, using the subsystem
value “ac.webrtc.sdk”. The log category of each log entry can be one of the following:

° sdk: For higher-level SDK entries

° sip: For SIP-level SDK entries

° sip-signal: For incoming or outgoing SIP messages
° media: For real-time media level SDK entries

These log messages can be viewed in the Console app and filtered by subsystem and
category.

2.10S SDK

WebRTC iOS Client SDK

24

2.5

2.6

To fully view SIP messages in the console log, and overcome the 1024-byte size limit on logs,
the application info.plist has to be configured to allow oversized os_log messages for the sip-
signal category. To do so, add the following entry to the info.plist file:
<key>0SLogPreferences</key>
<dict>
<key>ac.webrtc.sdk</key>
<dict>
<key>sip-signal</key>
<dict>
<key>Enable-Oversize-Messages</key>
<true/>
</dict>
</dict>
</dict>

Bitcode Support Deprecation

AudioCodes no longer supports Bitcode, due to Apple’s deprecation of Bitcode since Xcode 14 was
released. This allows us to minimize the SDK bundle size.

Swift

The SDK is written in Objective C and fully supports Swift. To integrate it in a Swift project, use a
bridging header in the following way:

1.

2
3.
4

Create a c-style header to be the Bridging Header.
Add the line: #import <MVWebRTCFramework/MVWebRTCFramework.h>.
For CallKit, add: #import <MVWebRTCFramework/MVWebRTCNativeCall.h> (Optional).

Assign the path to this header as the value for the Objective-C Bridging Header build setting.

CallKit Framework

The SDK provides the MVWebRTCNativeCall.xcframework optional framework, to allow for the
integration of the app’s VolIP calls with other call-related apps in the system.

their Xcode project.

‘ @ Apps that are not linked with CallKit at all, can remove the inclusion of this framework from

You can use the built-in CallKit integration via the MVWebRTCNativeCall/ACNativeCallService class,
. (See Section 3.11 for API reference, and Section 5.12 for examples).

It is also possible to interface with the CallKit framework manually, and only use the SDK’s standard
AudioCodesUA and AudioCodesSession APIs for internally VOIP call flows.

This requires a more granular management of the App’s audio session, and of the WebRTC audio
unit that performs real-time VOIP processing. Use the WebRTCAudioManager APl for this
functionality. See Section 3.3 for API reference, and Section 5.13 for examples.

integration, and also for handling audio interruptions when not using CallKit at all. The

‘@ It is highly recommended to use the MVWebRTCNativeCall framework for CallKit

2.i0S SDK WebRTC iOS Client SDK

ACNativeCallService class features a comprehensive logic layer to manage the interface
with the CallKit framework and the Operating System (OS) audio interruptions mechanism,
in a way that correctly handles multiple calls.

Opting out of the built-in CallKit support of the SDK, and using CallKit manually, may render
CallKit unstable when using it with multiple calls. This has been an inherent limitation with
CallKit for a long time The MVWebRTCNativeCall framework resolves it.

2.7 Push Notifications

When using push notifications, the application MUST use the CallKit framework for incoming calls,
because incoming call push notifications arrive via VOIP Push. See Section 5.15.

2.8 App Extensions

The MVWebRTCFramework.xcframework bundle is extension-safe and can be used in app
extensions for performing SIP login (for example, to implement the most robust strategy to respond
to register-refresh push notifications).

MVWebRTClInterface.xcframework and WebRTC.xcframework contain all media-related
references to APIs that are not extension safe, which is why they are decoupled from
MVWebRTCFramework.xcframework. See Section 5.15.2.

3. API Classes

WebRTC iOS Client SDK

3 API Classes

The API consists of the following:

Main Classes:

AudioCodesUA — AudioCodes User Agent (Singleton) — see Section 3.1
AudioCodesSession — For call representation (Interface) — see Section 3.2
WebRTCAudioManager — Class for managing audio routes — see Section 3.3

ACNativeCallService (iOS only) — Class for integrating call management with the OS
native telephony features — See Section 3.11

Helper Classes:

ACConfiguration — (Optional) Class for general configuration options — see Section 3.4
VideoConfiguration — (Optional) Class for video configuration — see Section 3.5
DTMFOptions — Class for settings DTMF options — see Section 3.6

RemoteContact — Class representing the remote contact — see Section 3.7

Listener Interfaces:

AudioCodesEventListener — Event listener for incoming calls and login state changes —
see Section 4.1

AudioCodesSessionEventListener — Event listener for call related events — see Section 4.2

WebRTCAudioRoutesListener — Event listener for audio route events — see Section 4.3

3. API Classes

WebRTC iOS Client SDK

3.1

AudioCodesUA

This is used to initialize the framework before starting to make and receive calls. It is mostly used to
initialize the WebRTC engine and register it to the service.

@interface AudioCodesUA NSObject
@property (nonatomic, weak) id <AudioCodesEventListener> delegate;
@property (nonatomic, assign) BOOL useSessionTimer;
@property (nonatomic, assign) int regExpires;
@property (nonatomic, assign) ACLogLevel logLevel;
@property (nonatomic, assign) id<ACLoggerProtocol> logger;
@property (nonatomic, strong) NSString* userAgent;
@property (nonatomic, assign) BOOL verifyServerCertificate;
@property (nonatomic, strong) NSString* caCertFilePath;
@property (nonatomic, assign) BOOL disconnectOnBrokenConnection;
@property (nonatomic, assign) BOOL contactRewrite;
@property (nonatomic, strong) SipHeadersDictionary*
registerExtraHeaders;
@property (nonatomic, strong) SipHeadersDictionary*
inviteExtraHeaders;
@property (nonatomic, readonly) NSArray <AudioCodesSession*>*
sessions;
+ (instancetype) getlInstance;
- (void) setServerConfig: (NSString*)proxyAddress
port: (int)port
serverDomain: (NSString*) serverDomain
transport: (ACTransportType) transport
iceServers: (NSArray
<1d<ACRTCIceServer>>*)iceServers;
- (void) setAccount: (NSString*)userName
displayName: (NSString*)displayName
password: (NSString*)password
authName: (NSString*)authName;
- (void) setPushNotificationsTeamId: (NSString*)teamId
bundleId: (NSString*)bundleId
apnsToken: (NSString*)apnsToken
voipToken: (NSString*)voipToken;
- (void) setOauthToken: (NSString*)accessToken;
- (void) setConnectionBinding:

(ACNetworkConnectionAttributes*

- (void)
- (void)
- (void)
- (void)

void)

- (NSString¥*)

login:

login;

logout;
logout:

yinitialPrefs

(BOOL) autoRegister;

(BOOL) forceClose;

(

(

(handleNetworkChange:
(ACNetworkChangeAttributes*

(

AudioCodesSession¥*)

)attributes;

call: (RemoteContact*)call to
withVideo: (BOOL)withVideo
inviteHeaders: (SipHeadersDictionary*) inviteHeaders;

sendInstantMessage:

(NSString*)message

to: (RemoteContact*) contact;

@end

3. API Classes WebRTC iOS Client SDK

3.1.1 Standard Methods / Properties

3.1.1.1 getinstance

Returns the singleton object instance of class AudioCodesUA.

3.1.1.2 setServerConfig

Configures the server.

Parameters

proxyAddress [NSString]: Address of server

port [integer]: Port of the proxy server address

serverDomain [NSString]: Domain name to which to register

transport [ACTransportType]: Transport for connection to the server — UDP/TCP/TLS]

iceServers [NSArray <id<ACRTClceServer>>]: List of STUN and TURN servers of the
ACRTClceServer protocol type, which can be created using the ACRTCIceServerFactory class.
For more information on creating ACRTCIceServer instances, refer to the developer
documentation in the ACRTCIceServer.h header file.

® iceServers are only applicable when real-time media is concerned, and so cannot be used
without MVWebRTCInterface.xcframework being linked.

Return Values

N/A

3.1.1.3 setAccount

Defines the account details.

Parameters

m userName [string]:, User name]

m password [string]:Authenticating user password

m displayName [string]: Display name for the user]

® authName [string]: Authorization user name, optional parameter. If nil, the user authorization

with be the userName value.

Return Values

N/A

3. API Classes WebRTC iOS Client SDK

3.1.1.4

3.1.1.5

id <AudioCodesEventListener> delegate

Sets / gets the delegate object.

Setter Parameters / Getter Return Value

B delegate [id <AudioCodesEventListener>]: Instance implementation of the
AudioCodesEventListener interface that holds the methods to be triggered; see Section 4.1
for details on how it is defined; see also Section 5.2 for an
example]._API Callbacks/ Listeners User Agent: Set

login:(BOOL)autoRegister

Initiates the SIP account with the configuration setters applied. It must be called after
setServerConfig and setAccount.

Parameters
B autoRegister [boolean]: Determines whether or not to perform SIP Registration once the
account is initiated:

e True: The SDK logs in to the service and the delegate method loginStateChanged is
called once the SIP Registration has been completed.

° False: The SDK does not log in to the service, however calls can be made. The method
should be regarded as synchronous without delegate callback.

Return Values

N/A

3. API Classes WebRTC iOS Client SDK

3.1.1.6

3.1.1.7

3.1.1.8

login

Initiates the service and performs registration. This is a convenience method which calls login (see
Section 3.1.1.5) with the autoRegister parameter set to Yes.

Parameters

N/A

Return Values

N/A

logout:(BOOL)forceClose

Performs SIP Un-REGISTER if necessary and shuts down the SIP account.

@ All account configurations are retained so that calling the login command again applies
them. To clear them, one must explicitly call setServerConfig and setAccount after logout.

Parameters

m forceClose [boolean]: Shuts down the SIP account and closes all connections without sending
un-REGISTER, unSUBSCRIBE or any other message. Note that setting forceClose to YES still
yields the loginStateChanged delegate call.

Return Values

N/A

logout

Convenience method which calls logout with forceClose set to NO.

Parameters

N/A

Return Values

N/A

-10 -

3. API Classes WebRTC iOS Client SDK

3.1.1.9

3.1.1.10

3.1.2

3.1.2.1

call

Initiates an outgoing call.

Parameters

m call_to [RemoteContact]: Destination address/number.
withVideo [boolean]: 'True' if the call is initiated with video.

inviteHeaders [SipHeadersDictionary]: Includes a list of headers defined as key/value pairs,
where each key is added as a header to the SIP INVITE with the specified value.

Return Values

B session [AudioCodesSession]: A call session object defined here.

sendinstantMessage

Initiates a SIP Instant Message to a remote contact, according to RFC 3428 — Session Initiation
Protocol (SIP) Extension For Instant Messaging.

Status updates for a sent message arrive via the instantMessageStatus:messageld: delegate method.

Parameters

B message [string]: The message string.

B contact [RemoteContact]: The message destination.

Return Values

B message ID string, [string]: Used by the delegate method instantMessageStatus:messageld: to
notify of status updates.

Advanced Methods / Properties

The advanced methods are optional. They provide an extra level of flexibility to the API, which is
based on SIP (Session Initiation Protocol). Developers who are familiar with SIP can make use of the
advanced methods.

SipHeadersDictionary* registerExtraHeaders

Allows the adding of additional headers to the registration request.

‘ @ The headers must be SIP headers that conform to RFC 3261.

Setter Parameter / Getter Return Value

m SipHeadersDictionary: SIP headers are defined as key/value pairs, where each key is added as
a header to the registration request with the specified value.

-11 -

https://www.ietf.org/rfc/rfc3428.txt
https://www.ietf.org/rfc/rfc3428.txt

3. API Classes WebRTC iOS Client SDK

3.1.2.2

3.1.2.3

3.1.2.4

3.1.25

SipHeadersDictionary* inviteExtraHeaders

Allows adding additional headers to the INVITE request or response.

‘ @ The headers must be SIP headers that conform to RFC 3261.

Setter Parameters / Getter Return Value

m SipHeadersDictionary: SIP headers are defined as key/value pairs, where each key is added as
a header to the SIP INVITE request with the specified value.

NSString* userAgent

Gets / Sets user-agent string, used to build the SIP header User-Agent.

Setter Parameters / Getter Return Value

B userAgent: [string]: Text describing the SIP user agent.

BOOL verifyServerCertificate

This is applicable to TLS only. Determines whether or not the SIP TLS transport should verify the
server certificate. The default value is False.

Setter Parameters / Getter Return Value

m verifyServerCertificate [boolean]: If 'False’, then the server certificate is not validated. If so,
the TLS connection can operate with untrusted server certificates. Otherwise, the server
certificate must pass validation, for the TLS connection to succeed.

NSString* caCertFilePath

The path to a custom Certificate Authority’s root certificate .pem file, to be used for TLS connections,
for validating server certificates. The .pem file can be either a single root certificate, or a bundled
certificate chain.

The default value is nil, in which case the default OS trust store is used for validation.

”

[[NSBundle mainBundle] pathForResource:@”custom-root-cert-filename

@ The value must be a valid full path to a file within the application bundle. For example:
of Type:@"pem"];

Setter Parameters / Getter Return Value

m caCertFilePath: [string]: The path in the application bundle, of the custom root certificate file.

-12 -

3. API Classes WebRTC iOS Client SDK

3.1.2.6

3.1.2.7

3.1.2.8

3.1.2.9

BOOL contactRewrite

Updates the transport address and the Contact header of the REGISTER request. When this option
is enabled, the SDK keeps track of the public IP address from the response of the REGISTER request.
Once it detects that the transport address has changed, it unregisters the current Contact, updates
the Contact with the transport address learned from the Via header, and registers a new Contact to
the registrar. It also updates the public name of the UDP transport if STUN (Session Traversal Utilities
for NAT) is configured.

Default: 'False’

Setter Parameters / Getter Return Value

® enable [boolean]:
e True: The library tracks the public IP address from the response of the REGISTER request.

° False: The library does not track the public IP address from the response of the REGISTER
request.

Return Values

N/A

BOOL disconnectOnBrokenConnection

Changes the method by which call handover is handled by the SDK. The default value is TRUE. Note
that SBC configuration is required to allow the call to continue on broken media.

Setter Parameters / Getter Return Value

B True/ False [boolean]:
° True: Disconnects the call when a network connection error occurs in the media stream.

° False: Allows the call to continue when there is a broken network connection in the
media stream.

int regExpires

Gets / Sets the default registration interval. The default value is 600 seconds.

Setter Parameters / Getter Return Value

m regExpires [integer (seconds)]

BOOL useSessionTimer

Allows enabling session timers in the call session.

Setter Parameters / Getter Return Value

] useSessionTimer [boolean]: If 'False’, then the session timers will be not be enabled.
Otherwise (default value) session timers are optionally supported. e.g., the SBC initiates
session timers if configured.

-13 -

3. API Classes WebRTC iOS Client SDK

3.1.2.10 AcCLoglLevel logLevel

3.1.2.11

3.1.2.12

Sets / Gets the log level used by the application. Release builds may want to set the log level lower
for security reasons. WebRTC internal logs are only enabled if the debug level is higher than or equal
to VERBOSE level.

‘ @ If not set, the default log level is ACLogLevelError.

Setter Parameters / Getter Return Value

B loglLevel [ACLogLevel]: Enumeration value which represents the log level.

id<ACLoggerProtocol> logger

Changes the logger used by the SDK.

If set, then all the SDK log messages will go through the acLogMessage method, except for WebRTC
internal log entries, that would be printed to the console if the loglevel property is equal to
ACloglevelVerbose.

If not set, by default the SDK uses unified-logging to print the log entries to console, and distinguishes
log entry categories. See “Viewing SDK Logs” in Section Usage Notes.

Setter Parameters / Getter Return Value

B logger [id <ACLoggerProtocol>]: Instance object implementing ACLoggerProtocol

handleNetworkChange

Handles network changes when called. This function re-registers the client and re-establishes the
audio sessions when the network has been changed.

automatically detect a network change. Ideally, this function must be called when the

@ This function must be explicitly called by the client application. The SDK does not
network is reconnected and not when it is disconnected.

Parameters

m attributes [ACNetworkConnectionAttributes]: Optional attributes for managing network
change handling.

° If a SIP connection binding has been applied via setConnectionBinding, then the value in
attributes.localAddressFamily MUST be either ACNetworkAddressFamilylPV4 or
ACNetworkAddressFamilylPV6 to maintain registrations or calls on network changes as
best as possible.

Return Values

N/A

-14 -

3. API Classes WebRTC iOS Client SDK

3.1.2.13 setConnectionBinding

Configures or disables the method by which the user-agent may bind its SIP connections. See section
5.17 for example usage.

‘ @ This method must be called BEFORE calling login.

Discussion:

SIP connection binding is the behavior which forces the SIP account to reuse the current SIP
connection for all outgoing messages.

Once SIP connection binding is applied, binding cannot be cancelled until the account is shut down.
Binding can only update on a network change, to be re-applied to a new connection (see
handleNetworkChange note below).

Connection binding is performed as follows:

m ifinitialPrefs is nil, then no connection binding is performed.

m ifinitialPrefs.localAddressFamily is ACNetworkAddressFamilyUnspecified, then the user agent
will adapt to any IP-address family by waiting for a connection to be established, and then
perform binding for the SIP account. This achieves the best support for maintaining calls and
registration during network changes.

m if initialPrefs.localAddressFamily is either ACNetworkAddressFamilylPV4 or
ACNetworkAddressFamilylPV6, then the user agent binds the SIP account connection before it
is established.

handleNetworkChange: Once called with the "attributes" parameter: If attributes.localAddressFamily
is ACNetworkAddressFamilylPV4 or ACNetworkAddressFamilylPV6, then binding will re-apply
according to the steps above. Otherwise, connection binding remains unchanged.

Using this method is generally not recommended. Binding the SIP connection is
@ recommended only for specific environments, because it limits the dynamic nature of

connectivity to the server per transaction, as well as limits the ability to maintain

registrations, subscriptions and calls on network changes between IP-address types.

When using the SIP account to make calls without registration (not calling the

@ connectSipAccount method), connection binding will work only if
initialPrefs.localAddressFamily is either ACNetworkAddressFamilylPV4 or
ACNetworkAddressFamilylPV6, because the ACNetworkAddressFamilylPV4 or
ACNetworkAddressFamilyUnspecified value defers binding in a manner that is not suitable
without registration.

Parameters

m initialPrefs [ACNetworkConnectionAttributes]: The network connection attributes that
determine the initial binding behavior of the SIP connection.

‘ @ Using a nil value removes SIP connection binding.

-15-

3. API Classes WebRTC iOS Client SDK

3.1.2.14

3.1.2.15

3.1.2.16

Return Values

N/A

NSArray <AudioCodesSession*>* sessions

Gets the current session list.

Parameters

N/A

Return Values

sessions [NSArray<AudiocodesSession*>: List of current existing sessions

setPushNotification

Allows the SDK to use push for incoming calls. This is an optional method. If set, the SDK sends the
push credentials to the SBC which allows the SBC to send Push messages for incoming calls and
registration refresh (see Demo client for example).

This method sets the Push parameters for the PNS according to:
Push Notification with the Session Initiation Protocol (SIP).
For more information, see https://tools.ietf.org/html/draft-ietf-sipcore-sip-push-20.

The values are stored in permanent memory and are used by the WebRTC SDK until the values are
reset to nil values. It is recommended to call this method before calling Login, as calling this method
afterwards, causes a re-register of the SIP stack.

Setting any of the parameters with a nil value, disables the Push Notifications entries in SIP.

Parameters

m teamld [string]: Typically should be the unique Apple Developer Team Identifier.

® bundleld [string]: The application Bundle Identifier. If this method is called from within an app
extension, then this MUST be the bundle identifier of the containing application.

m apnsToken [string]: The APNS Push Token string, used for REGISTER refresh push notifications.

m voipToken [string]: The VOIP Push Token string, used for high-priority incoming call push
notifications

Return Values

N/A

setOauthToken

Allows the SDK to use Oauth authentication for registration to the service. This is an optional
method. The SDK adds an authorization header with the supplied access token (the SBC needs to be
configured to use Oauth authorization as well).

-16 -

https://tools.ietf.org/html/draft-ietf-sipcore-sip-push-20

3. API Classes

3.2

Parameters

B accessToken [string]: Access token as received from the Oauth server (see Demo client for
example on Oauth registration).

Return Values

N/A

AudioCodesSession

Represents a call session using the following scenarios:

WebRTC iOS Client SDK

B When initiating a call via the AudioCodesUA

B When receiving a call back of an incoming call

Syntax

@interface AudioCodesSession

NSObject

@property (nonatomic, weak) id<AudioCodesSessionEventListener>
delegate;

@property (nonatomic, readonly) int sessionID;

@property (nonatomic, assign, getter=isAudioMuted) BOOL muteAudio;
@property (nonatomic, assign, getter=isVideoMuted) BOOL muteVideo;
@property (nonatomic, readonly) BOOL isOutgoing;

@property (nonatomic, readonly) BOOL hasVideo;

@property (nonatomic, readonly) BOOL isLocalHold;

@property (nonatomic, readonly) BOOL isRemoteHold;

@property (nonatomic, readonly) BOOL isDelayedOffer;

@property (nonatomic, readonly) CallState;

@property (nonatomic, readonly) NSInteger duration;

@property (nonatomic, readonly) NSInteger callStartTime;
@property (nonatomic, readonly) RemoteContact* remoteNumber;
@property (nonatomic, readonly) CallTransferState transferState;
@property (nonatomic, readonly) RemoteContact* transferContact;
@property (nonatomic, readonly) TerminationInfo *terminationInfo;
@property (nonatomic, readonly) NSUUID *callUUID;

@property (nonatomic, strong) id userData;

- (void) answer: (SipHeadersDictionary*)headers;

- (void) reject: (SipHeadersDictionary*)headers;

- (void) terminate;

- (void) sendDTMF: (DTMF)dtmf;

- (void) hold: (BOOL)hold;

- (void) transferCall: (RemoteContact*)remoteContact;

- (void) attendedTransferCall: (AudioCodesSession*)destination;

- (void) switchCamera;

- (void) showVideoLocalView: (UIView*)localView

remoteView: (UIView*) remoteView
completion: (ACTaskCompletion)completion;
- (void) stopVideo;

- (void) sendInfo: (NSString*)body
contentType: (NSString*)contentType;

-17 -

3. API Classes WebRTC iOS Client SDK

3.2.1

3.2.1.1

3.2.1.2

3.2.1.3

@end
Standard Methods / Properties

int sessionID;

Retrieves the internal identifier for the session. This identifier can be used in case there is more than
one session.

Return Values

m sessionID [integer]: ID of the session

answer

Initiates the object and establishes the call. This method is only valid for incoming calls.

Parameters

® headers [SipHeadersDictionary]: List of headers with a key/value where each key is added as a
header to the SIP response with the specified value.
® with video [boolean]:

° '"True': The call is answered with video and video unmuted. Both sides will see each
other.

° 'False' :The call is answered with video; however, video is muted. The local side sees the
remote video; however, the remote side cannot see the video of the local side.

Return Values

N/A

reject

Rejects a call. This method is only valid for incoming calls.

Parameters

m headers [SipHeadersDictionary]: List of headers with a key/value where each key is added as a
header to the SIP response with the specified value.

Return Values

N/A

-18 -

3. API Classes WebRTC iOS Client SDK

3.2.1.4 Terminate

Terminates an active call. This method is only valid for outgoing and established calls.

Parameters

N/A

Return Values

N/A

3.2.1.5 BOOL muteAudio (getter=isAudioMuted)

Sets / Gets the status of the audio mute (on/off).

Setter Parameter / Getter return value

B muteAudio [boolean]: 'True' to mute audio; 'False' to unmute audio.

3.2.1.6 BOOL muteVideo (getter=isVideoMuted)

Sets / Gets the status of the video mute (on/off).

Setter Parameter / Getter return value

B muteVideo [boolean]: 'True' to mute video; 'False' to unmute video

3.2.1.7 sendDTMF

Sends a DTMF character.

Parameters

m dtmf [DTMF]: Enumeration value which represents a DTMF character.

Return Values

N/A

3.2.1.8 BOOL isOutgoing

Checks if a call is outgoing.

Parameters

N/A

Return Values

® [boolean]: 'True' if outgoing, 'False' if incoming.

-19-

3. API Classes WebRTC iOS Client SDK

3.2.1.9

3.2.1.10

3.2.1.11

3.2.1.12

BOOL hasVideo

Checks if a call includes video.

Parameters

N/A

Return Values

m [boolean]: 'True' if the call includes video, 'False' if the call includes audio only.

CallState

Gets the call state of the session.

Parameters

N/A

Return Values

B callState [CallState]: Enumeration value which represents the current call state.

Terminationinfo terminationinfo

Gets the termination information of the session, if terminated.

Parameters

N/A

Return Values

m terminationinfo [Terminationinfo]: Object of the TerminationInfo type, representing
termination-related data. If the call is not terminated, the return value is nil.

NSinteger duration

Defines the call duration in seconds. It is '-1' if the call has not yet been established.

Parameters

N/A

Return Values

® duration [integer]: Call duration in seconds. This value is '-1' if the call has not yet been
established.

-20-

3. API Classes WebRTC iOS Client SDK

3.2.1.13

3.2.1.14

3.2.1.15

3.2.1.16

BOOL isLocalHold

Parameters

N/A

Return Values

B [boolean]: 'True' if call is on local hold, otherwise 'False'.

BOOL isRemoteHold

Parameters

N/A

Return Values

m [boolean]: 'True' if the call is placed on hold by remote side, otherwise 'False'.

BOOL isDelayedOffer

Parameters

N/A

Return Values

m [boolean]: 'True' if this is an incoming call with a delayed offer SDP, meaning that no SDP offer
was included in the incoming SIP INVITE message.

id userData

Sets / Gets user-created data to be attached to the session. The reference is removed from the
session after the session is terminated.

Setter Parameter / Getter Return Value

m userData: id type for any type of data

-21-

3. API Classes WebRTC iOS Client SDK

3.2.1.17

3.2.1.18

3.2.1.19

hold

Sets call on hold (or un-hold). The callProgress callback in AudioCodesSessionEventListener
indicates when the call has been placed on hold/unhold. Use the isLocalHold property to retrieve
the status.

Parameters

® Hold [boolean]: Set call to hold

Return Values

N/A

switchCamera

Switches the camera between the front and back camera. This method requires the device to have
two cameras. A successful camera switch is returned in the cameraSwitched callback in
AudioCodesSessionEventListener.

Parameters

N/A

Return Values

N/A

(void) showVideoLocalView:(UIView*)localView
remoteView:(UIView*)remoteView completion:(ACTaskCompletion)completion

Displays a video during a call, with the provided UlView objects for local and remote video rendering.
These objects must be empty views to act as containers to the video rendering.

m If the call is currently defined to be audio only, then a re-INVITE is initiated to
@ negotiate the video media. The AudioCodesSession will invoke the callStateChanged
event after the video re-negotiation is complete.
®m For privacy considerations, local video camera capture does not begin if the local view
is nil. The user must be able to see the video that is captured by the camera. So if
localView is nil, no video is captured locally and sent to the remote side.

Parameters

] localView [UIView: iOS standard UlView object]. This parameter can be nil, in which case no
local video is captured.

] remoteView [UIView, iOS standard UlView object]. This parameter can be nil, in which case
the remote video is not displayed].

m completion [ACTaskCompletion: Optional completion block to be called when video rendering
setup is complete.

-22 -

3. API Classes WebRTC iOS Client SDK

3.2.1.20

3.2.1.21

3.2.1.22

Return Values

N/A

stopVideo

Stops the capturing of the video and removes the remote and local renderer. In order to start the
video again, showVideo needs to be called. This call has no effect on the local and remote video
UlView objects that have been provided for showVideo.

Parameters

N/A

Return Values

N/A

id<AudioCodesSessionEventListener> delegate

Sets / Gets an event listener to listen for session events. The client application might add multiple
listeners. The listeners will receive events until they are either removed or the session is terminated.

Setter Parameter / Getter Return Value

B delegate [id <AudioCodesSessionEventListener>]: Implementation object of the
AudioCodesSessiobEventListener protocol.

RemoteContact *remoteNumber

Gets the call destination details within a RemoteContact type. Note that for the incoming call
transfer process, the remoteNumber value changes after the call transfer operation completes
successfully.

Parameters

N/A

Return Value

® remoteNumber [RemoteContact]: represents details of the remote destination

-23-

3. API Classes WebRTC iOS Client SDK

3.2.1.23

3.2.1.24

transferCall (Blind Transfer)

Transfers the other side of the current AudioCodesSession to the remote contact supplied.

This is a blind transfer and should be used when there is only one session. (See Demo Client for
usage)

Once the call transfer has been initiated, status updates are delivered via the callProgress delegate
method. The transferContact and transferState properties are then updated to represent the
transfer operation status.

Upon successful completion, the AudioCodesSession terminates automatically, and the
callTerminated delegate method is invoked.

Upon transfer failure, the AudioCodesSession resumes the current call, and the callProgress
delegate method is invoked, with the connected call state.

Parameters

B remoteContact [RemoteContact]: Contains the transfer destination data.

Return Values

N/A

attendedTransferCall (Attended Transfer)

Transfers the other side of the current AudioCodesSession to the AudioCodesSession supplied. This
is an attended transfer and should be used when there is more than one session. (See Demo Client
for usage). Once the call transfer has been initiated, status updates are delivered via the callProgress
delegate method. The transferContact and transferState properties are then updated to represent
the transfer operation status.

Upon successful completion, the AudioCodesSession terminates automatically, and the
callTerminated delegate method is invoked.

Upon transfer failure, the AudioCodesSession resumes the current call, and the callProgress
delegate method is invoked with the connected call state.

Parameters

m transferToSession [AudioCodesSession]: Transfer destination call. AudioCodesSession to
which the other side of the current call is transferred. For example, the other side of the
current AudioCodesSession tries to replace this call with a call to the number of the supplied
AudioCodesSession.

Return Values

N/A

-24 -

3. API Classes WebRTC iOS Client SDK

3.2.1.25

3.2.1.26

RemoteContact *transferContact

Retrieves the call destination details for the call during a call transfer operation. Valid when the call
transfer state is any value other than TRANSFER_STATE_UNDEFINED.

Parameters

N/A

Return Value

m transferContact [RemoteContact]: The transfer contact. This parameter can be the contact to
which the other side of the current call is transferred or the remote contact to which this call
is transferred.

CallTransferState transferState

Gets the status of a call transfer operation. Default is TRANSFER_STATE_UNDEFINED, denoting that
there is no ongoing transfer process. Whenever this property value is updated, the callProgress
delegate method is invoked.

Parameters

N/A

Return Values

B Transfer state: CallTransferState is the state of the transfer for this AudioCodesSession.
Possible states:

° TRANSFER_STATE_UNDEFINED: No transfer is in progress.

e TRANSFER_REQUEST_RECEIVED_IN_PROGRESS: The other side has sent a transfer
request, transferContact returns the contact to whom this call is transferred.

° TRANSFER_REQUEST_RECEIVED_FAILED: The other side has sent a transfer request,
however the transfer did not succeed.

e TRANSFER_REQUEST_RECEIVED_SUCCEEDED: The other side has sent a transfer request
and the transfer succeeded.

e TRANSFER_REQUEST_SEND_IN_PROGRESS: This side has sent a transfer request which
is being processed. transferContact returns the contact to whom the other side of this
call is transferred.

° TRANSFER_REQUEST_SEND_FAILED: This side has sent a transfer request which has
failed.

e TRANSFER_REQUEST_SEND_SUCCEEDED: This side has sent a transfer request which
has succeeded.

° TRANSFER_REPLACED: (Applicable for Attended Transfer, currently not supported) This
AudioCodesSession is in a call with a remote party and the remote party has been
replaced (side C in an attended transfer). remoteContact returns the new number to
where the call is transferred.

-25-

3. API Classes WebRTC iOS Client SDK

3.2.1.27

3.2.1.28

NSUUID *calluUuID

Defines an auto-generated UUID value associated with the call. It is used primarily for the SDK’s built-
in integration with the CallKit framework.

sendInfo

Sends a SIP INFO request within the session.

Parameters

B body [string]: The message body is converted to a string. e.g., a JSON structure has to be
converted to a JSON-string.

B contentType [string] The SIP content-type header value. Has to be a valid MIME type, for
example: “application/json”.

Return Values

N/A

-26 -

3. API Classes WebRTC iOS Client SDK

3.3

33.1

3.3.2

WebRTCAudioManager

Defines WebRTC SDK Audio management. This class handles audio routing during WebRTC calls, as
well as manual audio management for manually using CallKit.

Syntax

@interface WebRTCAudioManager : NSObject

@property (nonatomic, weak) id <WebRTCAudioRoutesListener>
delegate;

@property (nonatomic, readonly) AudioRoutingOptions
currentRoutingOptions;

+ (WebRTCAudioManager*) getInstance;
NSArray<AudioRouteNumber*>*) getAvailableAudioRoutes;

- (AudioRoute) getAudioRoute;
- (BOOL) overrideAudioRouteToSpeaker: (BOOL)enable;
BOOL) routeAudioToEnableBluetooth: (BOOL)enable;

// Manual Audio Management

(
(
- (BOOL) setAudioRoute: (AudioRoutingOptions)options;
(
(

@property (assign, nonatomic) BOOL useManualAudio;

@property (assign, nonatomic, getter=isAudioEnabled) BOOL
audioEnabled;

- (NSError*) setActiveAudioSession: (BOOL)setActive;

- (NSError*) configureAudioSession: (ACAudioPreset)preset;

- (void) audioSessionDidActivate: (AVAudioSession*)audioSession;

- (void) audioSessionDidDeActivate: (AVAudioSession*)audioSession;
@end

Notes on iOS Audio Routing

The general approach for audio routing in iOS is that iOS includes different behavioral patterns for
routing audio in various schemes (e.g., Default mode, Audio calls, Playback, Recording) and the audio
routing is determined internally by iOS as a function of the following variants:

1. The desired audio scheme (called “Audio Category / Mode”)
2. The currently available audio input / output hardware

3. General preferences whether to override audio to Loudspeaker, to allow Bluetooth, to mix
audio with system playback.

This product provides functionality to control the 3™ listed variant; to make audio routing control as
streamlined as possible, given iOS audio routing is non-deterministic. For instance, there is no
method for explicitly setting the audio route into a specific route (e.g., setAudioRoute Bluetooth),
rather we provide the setAudioRoute method with flag bitmask for preferences, because iOS audio
routing control only allows for stating preferences to allow Bluetooth if the hardware is available.

Notes on Using CallKit

The SDK provides the ACNativeCallService class as the recommended means to utilize the CallKit
framework in the application. However, one can opt to interface the CallKit framework manually. In
that case, special audio management must be performed in the various flows involving CallKit.

The WebRTCAudioManager provides such functionality. (See “Manual Audio Management”)

-27 -

3. API Classes WebRTC iOS Client SDK

333

3.3.3.1

3.3.3.2

3.3.3.3

3.3.34

Standard Methods / Properties

getinstance

Gets the singleton instance of the WebRTCAudioManager class.

Parameters

N/A

Return Values

B instance [WebRTCAudioManager]: Singleton object instance

id <WebRTCAudioRoutesListener> delegate

Gets / Sets a listener for listening to updates in the current audio route and available audio routes.

Setter Parameter / Getter Return Value

m delegate [id <WebRTCAudioRoutesListener>]: Implementation instance of the
WebRTCAudioRoutesListener protocol.

setAudioRoute

Sets the audio route. This method changes the audio route of the device. This function generally
should be used during a call. The audio is only routed if the new audio route is available.

Parameters

® options [AudioRoutingOptions]: Flags bitmask describing the audio routing preferences.

Return Values

m [boolean] 'True': If the new audio route was successfully applied.

m 'False': If the new audio route is not successful.

getAudioRoute

Gets the current audio route.

Parameters

N/A

Return Values

B audioRoute [AudioRoute]: Enumeration value which represents the current audio route.

-28 -

3. API Classes WebRTC iOS Client SDK

3.3.35

3.3.3.6

3.3.3.7

getAvailableAudioRoutes

Gets the available audio routes.

Parameters

N/A

Return Values

B audio routes [NSArray<AudioRouteNumber*>*]: Array of NSNumber objects representing the
available audio routes’ enumeration values.

overrideAudioRouteToSpeaker

Sets to override / disable overriding of the audio routing to the Loudspeaker.

Parameters

enable [boolean]: 'True' to override audio to speaker from any current route, 'False' to stop
overriding to speaker and resume regular audio routing.

Return Values

® [boolean]: True: If the new audio route was successfully applied.

[| False: If the new audio route is not successful.

routeAudioToEnableBluetooth

Sets allow / not allow for audio routing to Bluetooth if the Bluetooth audio route is available.

Parameters

enable [boolean]: 'True' to allow audio routing to Bluetooth, 'False' to prevent audio from routing
through Bluetooth.

Return Values

m [boolean]: True: If the new audio route was successfully applied.

[| False: If the new audio route is not successful.

-29-

3. API Classes WebRTC iOS Client SDK

334

3.34.1

3.34.2

3.3.4.3

Manual Audio Management

BOOL useManualAudio

Sets / Gets the property value to determine whether audio is managed manually for calls. Relevant
for when using the CallKit framework manually (i.e., without utilizing the ACNativeCallService
class).

Setter Parameter / Getter Return Value

® useManualAudio [Boolean]:’True’ for manually managing audio, ‘False’ for having the SDK
manage audio for calls

BOOL audioEnabled

Enables / Disables the audio unit, which is responsible for the VOIP real-time audio processing. It is
only applicable if useManualAudio is True, and if CallKit is used manually.

Setting this value to 'True' is required upon CallKit’s delivery of the didActivateAudioSession event.

Setting this value to False is required upon CallKit’s delivery of the didDeactivateAudioSession
event.

Setter Parameter / Getter Return Value

® audioEnabled [Boolean]:"True’ for activating the audio unit, ‘False’ deactivating the audio
unit.

setActiveAudioSession

Manually activates / deactivates the App’s audio session.

Parameters

B setActive [Boolean]:’True’ for activating the audio session, ‘False’ deactivating the audio
session.

Return Values

m error [NSError*]: Error object for error, or nil for success.

-30-

3. API Classes WebRTC iOS Client SDK

3344

3.34.5

3.3.4.6

configureAudioSession

Configures the App’s audio session to adjust audio routing and hardware configuration, for a given
preset. This affects the audio session’s audio category, audio mode and category options.

Parameters

B preset [ACAudioPreset]: Audio preset to configure the app’s audio. Can be one of the
following values:

e ACAudioPresetDefault — Configure audio to be ready for calls in idle state, where the
audio route defaults to the Loudspeaker, and external Bluetooth audio devices are
disabled.

e ACAudioPresetVOIP — Configure audio to be ready for calls in active state, where audio
route defaults either to the earpiece or to an externally connected audio device, and
Bluetooth connectivity is enabled for audio.

Return Values

m error [NSError*]: Error object for error, or nil for success.

audioSessionDidActivate

Notifies the SDK of receiving CallKit’s delegate callback of audioSessionDidActivate.

This method must be used to propagate CallKit’s activation of the audio session to the SDK.

Parameters

B audioSession [AVAudioSession*]: The App’s audio session, provided in the CallKit delegate
callback parameter.

Return Values

= N/A

audioSessionDidDeActivate

Notifies the SDK of receiving CallKit’s delegate callback of audioSessionDidDeActivate.

This method must be used to propagate CallKit’s de-activation of the audio session to the SDK.

Parameters

® audioSession [AVAudioSession*]: The App’s audio session, provided in the CallKit delegate
callback parameter.

Return Values

= N/A

-31-

3. API Classes WebRTC iOS Client SDK

3.4

34.1

34.1.1

3.4.1.2

3.4.1.3

ACConfiguration

Used to provide additional configuration options for the WebRTC SDK. Using this class is optional.
The class is a singleton object. The configuration object can be retrieved through getConfiguration.
Any changes to this object are applied to the SDK. It is recommended to apply any changes before
calling the AudioCodesUA login method.

@interface ACConfiguration : NSObject

+ (ACConfiguration*) getConfiguration;

@property (nonatomic, readonly) NSString *version;
@property (nonatomic, readwrite) int localServerPort;
@property (nonatomic, copy) DTMFOptions* dtmfOptions;

@property (nonatomic, copy) VideoConfiguration*
videoConfiguration;

@end

Standard Methods / Properties

getConfiguration

Defines the static method that returns the currently used configuration object.

Parameters

N/A

Return Values

m configuration [ACConfiguration]: Currently used configuration object; see Section 3.4.

NSString *version

Defines the static method that returns the current version of the SDK.

Parameters

N/A

Return Values

m Version [string]: Version of the SDK, e.g., 1.x

int localServerPort

Sets / Gets the current default local port used by the SIP stack. Default value is 6000.

Setter Parameter / Getter Return Value

® localServerPort [integer]: Default local user port (default 6000)

-32-

3. API Classes WebRTC iOS Client SDK

34.1.4

3.4.1.5

DTMFOptions* dtmfOptions

Gets / Changes the DTMFOptions class used by the SDK. This allows the sending of DTMF through
either the WebRTC or SIP INFO. The class allows the changing of the DTMF duration and interval (if
applicable for the chosen method). See Section 3.6 for more information.

Setter Parameter

® dtmfOptions: DTMFOptions class for setting the handling of DTMF tones.

Getter Return Value

B dtmfOptions copy [DTMFOptions]: DTMFOptions class for setting the handling of DTMF tones;
the default value is for the WebRTC to handle DTMF tones.

The return value is a copy (internal property value) of the DTMFOptions object used by the
ACConfiguration singleton. Therefore, a call like [ACConfiguration
getConfiguration].dtmfOptions.dtmfMethod = SIP_INFO will not take effect.

For changes to take effect, a «call must be made [ACConfiguration
getConfiguration].dtmfOptions = someDtmfOptions, i.e., the property setter with a
DTMFOptions object must be explicitly used.

VideoConfiguration* videoConfiguration

Gets / Changes the current video configuration used by the SDK. See also Section 3.5.

Setter Parameter

m videoConfiguration: Object containing video configuration options.

Getter Return Value

m videoConfiguration copy [VideoConfiguration]: Class containing video configuration options.

The return value is a copy (internal property value) of the VideoConfiguration object used
by the ACConfiguration singleton. Therefore, a «call like [ACConfiguration
getConfiguration].videoConfiguration.cameraWidth = 480 will not take effect.

In order for changes to take effect, you must call [ACConfiguration getConfiguration].
videoConfiguration = someVideoConfiguration, i.e., the property setter with a
VideoConfiguration object must be explicitly used.

-33-

3. API Classes WebRTC iOS Client SDK

3.5

35.1

3.6

3.6.1

Video Configuration

Provides additional configuration options for the WebRTC SDK. Using this class is optional. The class
provides access to public parameters that can be changed if needed.

The configuration object can be retrieved through the videoConfiguration property in the
ACConfiguration class. Calling the videoConfiguration setter in the ACConfiguration class will apply
the changes. It is recommended to set videoConfiguration before showVideo is called.
@interface VideoConfiguration : NSObject <NSCopying>

@property (nonatomic, readwrite) NSInteger cameraWidth;

@property (nonatomic, readwrite) NSInteger cameraHeight;

@property (nonatomic, readwrite) NSInteger cameraFrameRate;

@end

Camera Parameters

B cameraWidth — Captures the width of the camera (default 640)
B cameraHeight - Captures the height of the camera (default 480)

B cameraFrameRate - Captures the frame rate of the camera (default 15)

DTMFOptions

Provides additional configuration options for the WebRTC SDK. Using this class is optional. The class
provides access to public parameters that can be changed if needed. The class allows configuration
of sending DTMF events.

@interface DTMFOptions : NSObject <NSCopying>

@property (nonatomic, readwrite) DTMFMethod dtmfMethod;

@property (nonatomic, readwrite) NSInteger duration;

@property (nonatomic, readwrite) NSInteger intervalGap;

@end

DTMF Parameters

m dtmfMethod: DTMFMethod enum parameter that supports sending of DTMF through:

° WEBRTC - DTMF is sent through media by telephone-event using the WebRTC engine.
This is the default method.

° SIP_INFO - DTMF events are sent through SIP_INFO events.

® duration: Duration of the DTMF event (milliseconds). When using SIP_INFO, the minimum is
100 (default value).

B intervalGap: The interval gap in milliseconds between sending DTMF events. This is only
relevant for WEBRTC DTMF events. Default: 70.

-34-

3. API Classes WebRTC iOS Client SDK

3.7

3.7.1

3.71.1

3.7.1.2

3.7.1.3

RemoteContact

Represents a remote contact. This contact can be either a dialed number or a remote contact
received through an incoming call.

@interface RemoteContact: NSObject

@property (nonatomic, strong) NSString *displayName;
@property (nonatomic, strong) NSString *userName;
@property (nonatomic, strong) NSString *domain;

@end

Standard Methods / Properties

NSString *displayName

Sets / Gets the optional contact display name. Since this does not affect SIP signaling, it's optional;
allows for easy retrieval of the display name used in the call.

Setter Parameters / Getter Return Values

m displayName [NSstring]: Display name of the remote contact

NSString *userName

Sets / Gets the contact user name.

Setter Parameter / Getter Return Values

® userName [string]: User name of the remote contact

NSString *domain

Sets / Gets the contact domain.

Setter Parameter / Getter Return Values

B domain [string]: Defines the domain of the remote contact. This value can remain unset,
which defaults to the same domain defined as the serverDomain parameter of the
setServerConfig method.

-35-

3. API Classes WebRTC iOS Client SDK

3.8

38.1

3.8.1.1

3.8.1.2

ACAlertinfoAttributes

Represents the data contained in the Alert-Info header of an incoming INVITE request for an
incoming call.

@protocol ACInfoAlertAttributes <NSObject>
@property (nonatomic, readonly) BOOL autoAnswer;
@property (nonatomic, readonly) NSInteger delay;
@end

Standard Methods / Properties

BOOL autoAnswer

Getter property for indicating whether the call should be answered automatically after the delay
property value.

Getter Return Values

® True: The call should be answered automatically after the amount of seconds in the delay
property value

B False: The call should not be answered automatically

NSInteger delay

Setter Parameter / Getter Return Values

delay [Integer]: The amount of time, in seconds, that needs to pass before the call is answered
automatically.

-36-

3. API Classes WebRTC iOS Client SDK

3.9

3.9.1

3.9.1.1

ACNetworkConnectionAttributes

Represents optional network connection attributes for the user-agent.

@interface ACNetworkConnectionAttributes: NSObject

@property (nonatomic, assign) ACNetworkAddressFamily
localAddressFamily;

+ (instancetype) attrWithLocalAddressFamily:
(ACNetworkAddressFamily) addressFamily;

@end
Standard Methods / Properties

ACNetworkAddressFamily localAddressFamily

Gets / Sets the local IP-address family type, as determined by the application, to be the primary
address family for connections.

Discussion:

It is the application's responsibility to determine which IP address type is the primary one to
consider.

When binding the UA to a connection using the setConnectionBinding method, determining the
primary address type is valuable for the following:

B When making calls without registrations, connection binding can only occur if
setConnectionBinding was called with initialPrefs.localAddressFamily value to be
ACNetworkAddressFamilylPV4 or ACNetworkAddressFamilylPVe6.

B On network changes with SIP connection binding applied, maintaining calls and registrations
can only occur if handleNetworkChange is called with attributes.localAddressFamily to be
ACNetworkAddressFamilylPV4 or ACNetworkAddressFamilylPV6.

Possible Values of the ACNetworkAddressFamily type:

m ACNetworkAddressFamilyUnspecified: Represents any IP-address family
m ACNetworkAddressFamilylPV4: Represents IPV4 address family

m ACNetworkAddressFamilylPV6: Represents IPV6 address family

-37-

3. API Classes

WebRTC iOS Client SDK

3.10

Terminationinfo

Represents a remote contact. This contact can either be a dialed number or a remote contact
received through an incoming call.

@interface TerminationInfo: NSObject

@property (nonatomic) CallTermination termination;
@property (nonatomic) NSInteger sipStatusCode;
@property (nonatomic, strong) NSString *sipStatusText;
@property (nonatomic, strong) NSString *sipReasonHeaderValue;
@property (nonatomic, strong) NSString *sipMessage;
@end

3.10.1 Properties

3.10.1.1 CallTermination termination
Returns an enumeration value representing a general call termination reason.

3.10.1.2 NSinteger sipStatusCode
Returns the SIP response code that the call was terminated with. If the call was not terminated with
a SIP-related status, it returns 0.

3.10.1.3 NSString *sipStatusText
Returns the string of the SIP response text corresponding to the SIP response code. If not applicable,
returns nil.

3.10.1.4 NSString *sipReasonHeaderValue
Returns the value of the SIP “Reason” header, if exists in the SIP message that has caused the
termination. If the call wasn’t terminated by a SIP message with a “Reason” header, the returned
value is nil.

3.10.1.5 NSString *sipMessage

Returns the contents of the last SIP message, if available, of the SIP transaction that has terminated
the call. If not available, or if the call was not terminated with a SIP transaction, nil is returned.

-38-

3. API Classes WebRTC iOS Client SDK

3.11 ACNativeCallService

Used for high-level interaction with the native telephony system of the device's operating system.
Currently this applies to the following:

B jOS CallKit: Manages the usage of the CallKit framework for call management.

® iOS Native Audio Management: Interacts with the system audio management, with or
without CallKit, and handles the entire audio management aspect with regards to VOIP calls
and the App runtime. This also includes managing audio categories, modes and routing with
respect to the different flows of call management.

@interface ACNativeCallService : NSObject

@property (nonatomic, readonly) BOOL callGroupSupported;

@property (nonatomic, readonly) BOOL usingCallKit;

+ (instancetype) sharedInstance;

- (void)

initiateWithConfiguration: (CXProviderConfiguration*)config;

- (void) invalidate;

- (void) reportNewIncomingCall: (AudioCodesSession*)call

localizedCallerName: (NSString*)callerName

answerCallback: (ActionExecutionBlock
_Nullable)answerCallback

rejectCallback: (ActionExecutionBlock
_Nullable)rejectCallback

result: (ACCallKitTaskSetupCompletion
_Nullable)completion;
- (void) reportCallTerminated: (AudioCodesSession*)call
terminationStatusCode: (int) statusCode;
- (void) reportCallUpdated: (AudioCodesSession*)call;

(void) reportCallStartedConnecting: (AudioCodesSession*)call;
- (void) reportCallEstablished: (AudioCodesSession*)call;
()

initiateStartCall: (AudioCodesSession*)call

- (void
callerName: (NSString*)callerName

actionCallback: (ActionExecutionBlock
~Nullable)actionCallback

result: (ACCallKitTaskSetupCompletion
_Nullable)completion;

- (void) initiateAnswerCall: (AudioCodesSession *)call

actionCallback: (ActionExecutionBlock
~Nullable)actionCallback

result: (ACCallKitTaskSetupCompletion
_Nullable)completion;

- (void) initiateEndCall: (AudioCodesSession *)call

actionCallback: (ActionExecutionBlock
~Nullable)actionCallback

result: (ACCallKitTaskSetupCompletion
_Nullable)completion;

- (void) initiateHoldCall: (AudioCodesSession *)call
onHold: (BOOL) onHold

actionCallback: (ActionExecutionBlock
_Nullable)actionCallback

result: (ACCallKitTaskSetupCompletion
_Nullable)completion;

- (void) initiateMuteCall: (AudioCodesSession *)call
muted: (BOOL)muted

-39.

3. API Classes WebRTC iOS Client SDK

3.11.1

3.11.1.1

3.11.1.2

3.11.1.3

actionCallback: (ActionExecutionBlock
_Nullable)actionCallback

result: (ACCallKitTaskSetupCompletion
_Nullable)completion;

- (void) initiateSendDtmfCall: (AudioCodesSession *)call
digit: (UInt8)digit
actionCallback: (ActionExecutionBlock
_Nullable)actionCallback

result: (ACCallKitTaskSetupCompletion
_Nullable)completion;

@end
Class Type Definitions

typedef NS_ENUM (NSinteger, ACCallKitExecutionBlockResult)

Defines the possible return values of a callback block, that is executed by a call action.
m ACCallKitExecutionBlockResultUndefined — Execution block result has no effect on the
corresponding call action. The action handler will proceed with its default behavior.

B AcCCallKitExecutionBlockResultFulfill — Execution block determines that the call action is
fulfilled. This return value of an action callback prevents the action handler from proceeding
with its default behavior.

B AcCcCallKitExecutionBlockResultFail — Execution block determines that the call action has
failed. This return value of an action callback prevents the action handler from proceeding
with its default behavior.

typedef ACCallKitExecutionBlockResult (*ActionExecutionBlock)(void);

Defines the code that is executed when the call action handler operates. The return values that are
different than ACCallKitExecutionBlockResultUndefined, informs the handler that the
ActionExecutionBlock completely replaces its default behavior. This way, one can determine exactly
how to use the AudioCodesSession object that corresponds to the call action.

typedef void (*ACCallKitTaskSetupCompletion)(NSArray * _Nullable
actionUUIDs, NSError * _Nullable error)

Defines the completion block of a call action setup. When it executes, the setup of the call action is
complete and the call action is underway to be performed in conjunction with CallKit.

If CallKit is not in use, this code executes immediately:

B ActionUUIDs — Defines an array of call action identifiers, specific to CallKit. Currently it is only
used to optionally maintain an identification to the corresponding call action.

m Error — Defines the NSError object to set up the corresponding call action, in case of failure.

-40 -

3. API Classes WebRTC iOS Client SDK

3.11.2

3.11.2.1

3.11.2.2

3.11.2.3

Standard Methods / Properties

sharedinstance

Returns the singleton instance of the ACNativeCallService. Calling it for the first time also starts
monitoring the system’s delivery of audio interruption notifications.

Note: When using CallKit and audio interruption begins (such as for incoming GSM calls,
activating Siri, Alarm Clock alerts firing), the SDK automatically holds any active calls.

When audio interruption ends, the SDK automatically resumes the calls held by the
interruption.

Developers can be notified of these actions via the delivery of
ACAudiolnterruptNotification. See Section 4.4.2.

Without CallKit, it is the developer’s responsibility to hold / unhold the calls.

BOOL usingCallKit

Defines the getter property that indicates whether CallKit is being used.

Getter Return Values
® TRUE: The method initiateWithConfigutation: was called with a valid
CXProviderConfiguration object, and invalidate was not called.

B FALSE: The method initiateWithConfiguration: was not called, or invalidate was called.

value is 'FALSE', and the ACNativeCallService object operates as a higher layer that uses the
SDK regularly for call management. So every method call to ACNativeCallService without

® The ACNativeCallService class can operate fully without CallKit. In that case, the usingCallKit
CallKit, has the underlying desired effect of calling the corresponding SDK functionality.

BOOL callGroupSupported

Indicates whether the SDK supports call grouping (conference) in conjunction with the native call
system. It's value is always FALSE.

-41 -

3. API Classes WebRTC iOS Client SDK

3.11.2.4 initiateWithConfiguration:(CXProviderConfiguration*)config

Initiates CallKit integration with the CallKit configuration given as a CXProviderConfiguration object.
The CXProviderConfiguration has the following methods that are supported by the SDK:

B initWithLocalizedName:(NSString*)localizedName — Init with the application name, given for
the CallKit system to display with calls performed / received via the SDK.

m NSString *ringToneSound — Determines a sound file in the App bundle, to be played by CallKit
on incoming call

B NSData *iconTemplatelmageData — Defines image data of a template image to display by
CallKit, in the native call screen Ul, as the App icon.

B NSUinteger maximumCallGroups — Defines the maximum available calls. The SDK supports up
to 4 calls simultaneously.

B BOOL includeCallsinRecent — Defines whether or not to include the app’s calls in the native
Phone’s Recent database

B BOOL supportsVideo — Defines whether video should be supported. The SDK sully supports
video.

B NSSet <NSNumber*>* supportedHandleTypes — Defines the types of calling destinations to
support, corresponding to CXHandleType values. The SDK supports
CXHandleTypePhoneNumber.

For more details on configuring the CXProviderConfiguration object, please refer to the
CXProviderConfiguration documentation.

This method is optional, and the ACNativeCallService class can be used without CallKit at

@ all. Not calling the initiateWithConfiguration: tells the ACNativeCallService class to operate
regularly as a higher-level layer on top of AudiocodesUA / AudioCodesSession. This way,
applications can use this class in a way that enabling or disabling usage of CallKit is
transparent to the SDK.

3.11.2.5 invalidate

Stops the CallKit provider, disables CallKit usage, and terminates every call currently ongoing, that
has been initiated or received with CallKit.

-42 -

https://developer.apple.com/documentation/callkit/cxproviderconfiguration

3. API Classes WebRTC iOS Client SDK

3.11.2.6

3.11.2.7

reportNewlncomingCall

Notifies the call service of a new incoming call. If CallKit is used, then it will display the native
incoming call Ul.

Parameters

® call [AudioCodesSession]: The AudioCodesSession object that represents the corresponding
call.

m callerName [NSString]: The display name of the remote party. Applications can provide a
custom display name that is different from the AudioCodesSession RemoteNumber
properties.

m answerCallback [ActionExecutionBlock]: Code to be executed when pressing the native call Ul
answer button. The return value of the callback determines how the answer handler should
proceed. See ACCallKitExecutionBlockResult.

B rejectCallback [ActionExecutionBlock]: Code to be executed when pressing the native call Ul
reject button. The return value of the callback determines how the reject handler should
proceed. See ACCallKitExecutionBlockResult.

m completion [ACCallKitTaskSetupCompletion] The completion block.

Return Values

N/A

reportCallTerminated

Notifies the call service that a call was terminated with a given status code.

method is important for properly handle outgoing call connection, including audio routing

® This method should be called for every termination cause, both local or remote. Using this
and management.

Parameters

m call [AudioCodesSession]: The corresponding call object.

B statusCode [int]: Value corresponding to CallTermination type.

Return Values

N/A

-43 -

3. API Classes WebRTC iOS Client SDK

3.11.2.8

3.11.2.9

3.11.2.10

3.11.2.11

reportCallUpdated

Triggers the call service for updating the call properties.

This method must be called at least once in order for the system to register the basic call
functionality, such as whether hold / DTMF is supported.

Parameters

m call [AudioCodesSession]: The corresponding call object

Return Values

N/A

reportCallStartedConnecting

Updates the system from when the call has started connecting. Applies only for outgoing call.

Parameters

m call [AudioCodesSession]: The corresponding call object

Return Values

N/A

reportCallEstablished

Updates the system for when the call is established. Applies only for outgoing call.

® Using this method is important for properly handle outgoing call connection, including
audio routing and management.

Parameters

m call [AudioCodesSession]: The corresponding call object

Return Values

N/A

initiateStartCall

Registers a start call operation with the call service.

the AudioCodesSession "call" parameter is provided here, meaning that one should call this method
right after the AudioCodesSession object created, i.e when the SIP INVITE message is being sent.

-44 -

3. API Classes WebRTC iOS Client SDK

Parameters

call [AudioCodesSession]: The corresponding call object

callerName [NSString]: The display name of the remote party. Applications can provide a
custom display name that is different from the AudioCodesSession RemoteNumber
properties.

® actionCallback [ActionExecutionBlock]: Code to execute by the action handler when the call
actually starts. This can be used to update Ul or perform other related tasks.

B Completion [ACCallKitTaskSetupCompletion]: Completion block

Return Values

N/A

3.11.2.12 initiateAnswerCall

Registers answering a call with the call service. This applies to cases when the user answers the call
from the application, and not from the native call Ul.

Parameters

m call [AudioCodesSession]: The corresponding call object

® actionCallback [ActionExecutionBlock]: Code to execute by the action handler when the call is
being answered. This can be used to update Ul or perform other related tasks.

B Completion [ACCallKitTaskSetupCompletion]: Completion block of setting up the action.

Return Values

N/A

3.11.2.13 initiateEndCall

Registers ending a call with the call service. This applies to cases when the user ends the call from
the application, and not from the native call Ul.

Parameters

m call [AudioCodesSession]: The corresponding call object

® actionCallback [ActionExecutionBlock]: Code to execute by the action handler when the call is
being terminated. This can be used to update Ul or perform other related tasks. One can
determine in this callback whether to terminate or reject.

@ If this is an incoming call, which has been reported with a reject callback, and the call has
not been established, then the reject callback will be invoked.

m Completion [ACCallKitTaskSetupCompletion]: Completion block of setting up the action.

Return Values

N/A

-45 -

3. API Classes WebRTC iOS Client SDK

3.11.2.14

3.11.2.15

3.11.2.16

initiateHoldCall

Registers holding / resuming a call with the call service.

Parameters

m call [AudioCodesSession]: The corresponding call object
onHold [BOOL]: The desired hold state.

actionCallback [ActionExecutionBlock]: Code to execute by the action handler when the call is
being held / resumed.

B Completion [ACCallKitTaskSetupCompletion]: Completion block of setting up the action.

Return Values

N/A

initiateMuteCall

Registers muting / unmuting audio in a call with the call service.

Parameters

m call [AudioCodesSession]: The corresponding call object
muted [BOOL]: The desired mute state.

actionCallback [ActionExecutionBlock]: Code to execute by the action handler when the call is
being muted / unmuted.

B Completion [ACCallKitTaskSetupCompletion]: Completion block of setting up the action.

Return Values

N/A

initiateSendDTMFCall

Registers sending DTMF in a call with the call service.

Parameters

call [AudioCodesSession]: The corresponding call object.
m digit [UInt8]: DTMF digit value corresponding to the SDK DTMF type.

® actionCallback [ActionExecutionBlock]: Code to execute by the action handler when DTMF is
about to be sent.

m Completion [ACCallKitTaskSetupCompletion]: Completion block of setting up the action.

Return Values

N/A

- 46 -

3. API Classes WebRTC iOS Client SDK

3.11.2.17 isCallAssociatedWithNative

Determines whether the call was initiated using the ACNativeCallService.

Parameters

m call [AudioCodesSession]: The corresponding call object

Return Values

B TRUE: The usingCallKit property returns True, and the method reportNewIncomingCall or
initiateStartCall was called with the call object as a parameter.

m FALSE: Otherwise

-47 -

4. API Callbacks / Delegate Protocols / Notifications WebRTC iOS Client SDK

4 API Callbacks / Delegate Protocols /
Notifications

The API provides the capability to register to listen to different types of events and implement
available callback functionalities. The following describes these supported features.

4.1 AudioCodesEventListener

Defines the interface for receiving SDK events. This interface must be implemented and set through
the AudioCodesUA class to receive these events.

4.1.1 Login State Changed Event

Triggered when the login state has been changed.

Syntax

- (void) loginStateChanged: (BOOL) isLogin cause: (NSString*)cause;

Parameters

IsLogin [boolean]: 'True' if logged in and 'False' if not logged in.

cause [string]: Text describing the received SIP reason. This string can be predominantly used
if more information on a login failure is required.

B This string can be one of the following:

extern NSString* const ACUALoginChangedReasonConnected;
extern NSString* const ACUALoginChangedReasonDisconnected;
extern NSString* const ACUALoginChangedReasonConnectionFailed;

4.1.2 Incoming Call Event

Triggered when receiving an incoming call.

Syntax

- (void) incomingCall: (AudioCodesSession*)call;

- (void) incomingCall: (AudioCodesSession*)call
infoAlert (id<ACInfoAlertAttributes>)infoAlert;

Parameters

m call [AudioCodesSession]: The incoming call session object

m infoAlert [ACInfoAlertAttributes]: Optional overloaded parameter, containing data from the
“Alert-Info” header, if it exists in the incoming INVITE request. If no relevant data exists, this
parameter value is nil.

4.1.3 Incoming Instant Message Event

Triggered when receiving an incoming SIP instant message.

-48 -

4. API Callbacks / Delegate Protocols / Notifications WebRTC iOS Client SDK

4.14

4.2

4.2.1

4.2.2

Syntax

- (void) incomingInstantMessage: (NSString*)message
from: (RemoteContact*) remoteContact;

Parameters

B message [string]: The incoming message text

° remoteContact [RemoteContact]: The message sender

Outgoing Instant Message Status Update

Triggered when there is an update on the status of a sent SIP instant message request.

Syntax

- (void) instantMessageStatus: (InstanceMessageStatus) status
messageld: (NSString*)messageld

Parameters

B status [InstanceMessageStatus]: The status of the outgoing message request. Possible values:
° IM_UNDEFINED = -1: Undefined
° SUCCESS: Received success response (SIP 200-0K)
e ACCEPTED: Received accepted response (SIP 202)
° NOT_FOUND: Received not-found error (SIP 404)
° UNKNOWN_ERROR: Received other unknown error

B messageld [string]: The message identifier which corresponds to the one returned by the
sendInstantMessage method call.

AudioCodesSessionEventListener

callTerminated

Callback when the session is terminated by the local or the remote side. Use the terminationinfo
getter property for call termination data.

Syntax

- (void) callTerminated: (AudioCodesSession*)call;

Parameters

call [AudioCodesSession]: The call session object that was terminated. The object is removed by the
callTerminated method.

callProgress

Callback for changes in the state of the call. The call progress state can be retrieved by callState
property of the AudioCodesSession object.

-49-

4. API Callbacks / Delegate Protocols / Notifications WebRTC iOS Client SDK

4.2.3

4.24

Syntax

- (void) callProgress: (AudioCodesSession*)call;

Parameters

call [AudioCodesSession]: The call session object

caliNotifyEvent

Callback for incoming SIP-Notify requests that are associated with the call, and can represent a
certain remote-control event that the client application is required to perform.

Syntax

- (void) callNotifyEvent: (AudioCodesSession*)call
type: (CallNotifyEventType) type dtmfString: (NSString*)dtmf;

Parameters

call [AudioCodesSession]: The call session object

dtmf [String]: Optional parameter. For event type ‘dtmf’, the parameter value is the DTMF
string. For any other event type, the value is nil.

m type [CallNotifyEventType]: The event type that corresponds to the incoming Notify request.
It can be one of the following:

e ACCallNotifyEventUndefined — a generic NOTIFY request was received

e ACCallNotifyEventTalk — If the call is incoming and is not answered yet, then the client
application is required to answer the call. If the call is already active and on hold, then
the client application is required to un-hold it.

° ACCalilNotifyEventHold — If the call is active, then the client application is required to put
the call on hold

e ACCallNotifyEventDTMF — The client application is required to send DTMF characters
provided in the dtmf string parameter. This should be performed using calls to the
sendDTMF method consecutively for each character in the DTMF string, and in a way
that is non-blocking to the current thread. The interval between sending each DTMF
character should be MAX(DTMFOptions.intervalGap, DTMFOptions.duration).

e ACCallNotifyEventConference — Currently not supported

cameraSwitched

Callback for when the camera has been switched between the front or the back camera.

Syntax

- (void) cameraSwitched: (BOOL) frontCamera;

Parameters

m frontCamera [boolean]: 'True' : the camera has switched to the front camera

® 'False': the camera has switched to the back camera.

-50-

4. API Callbacks / Delegate Protocols / Notifications WebRTC iOS Client SDK

4.2.5

incominginfo

Callback for when a SIP INFO message arrives.

Syntax

- (void) incomingInfo: (id<ACInfoMessage>) infoMessage;

Parameters

B infoMessage [ACInfoMessage] The INFO message structure, containing these properties:
° contentType [string]: The INFO message body MIME type
° infoBody [string]: The INFO message body string

-51-

4. API Callbacks / Delegate Protocols / Notifications WebRTC iOS Client SDK

4.3

4.3.1

4.3.2

4.4

4.4.1

WebRTCAudioRoutesListener

Defines the interface for receiving audio routes events. The interface must be implemented and set
through the WebRTCAudioManager class to receive these events.

audioRoutesChanged

Callback for when the list of available audio routes has been changed, for example, if the user is
connected to a Bluetooth audio device.

Syntax

- (void)
audioRoutesChanged: (NSArray<AudioRouteNumber*>*)audioRoutelList;

Parameters

B audioRoutelist [NSArray<AudioRouteNumber*>*: List of available audio routes

currentAudioRouteChanged

Defines the callback for when the currently used audio route has been changed. e.g., if the user adds
a Bluetooth audio device, the SDK routes the audio to the Bluetooth device and this callback is called.

Syntax

- (void) currentAudioRouteChanged: (AudioRoute)newAudioRoute;

Parameters

® newAudioRoute [AudioRoute]: New audio route through which the audio is routed.

NSNotifications

AudioCodesSession Notifications

Observable notifications for AudioCodesSession events, equivalent to its delegate methods. The
Notification object is the relevant AudioCodesSession instance.

extern NSString* const ACSessionCallProgressNotification;
extern NSString* const ACSessionCallTerminatedNotification;
extern NSString* const ACSessionCallNotifyEventNotification;
The ACSessionCallNotifyEventNotification includes user info keys describing the
CallNotifyEventType and DTMF values associated with the call notify event:
extern NSString* const ACSessionNotifyEventTypeUserInfoKey;
extern NSString* const ACSessionNotifyDTMFUserInfoKey;
extern NSString* const ACSessionCameraSwitchedNotification;

The ACSessionCameraSwitchedNotification notification includes a user-info key describing whether
it's front or back camera. The value is a boolean wrapped in NSNumber object, whose value is 'True'
for front camera and 'False' for back camera.

extern NSString* const
ACSessionCameraSwitchedFrontCameraUserInfoKey;

-52-

4. API Callbacks / Delegate Protocols / Notifications WebRTC iOS Client SDK

4.4.2

WebRTCAudioManager Notifications

Observable notifications for WebRTCAudioManager events, equivalent to its delegate methods. The
Notification objects include user-info key-values described below.

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

NSString *
NSString *
NSString *
NSString *
NSString *
NSString *
NSString *
NSString *
NSString *
NSString *
NSString *

const
const
const
const
const
const
const
const
const
const
const

ACAudioRouteChangedNotification;
ACAudioRouteRouteChangedNotificationCurrentRouteKey;
ACAudioRouteRouteAvailabilityChangedNotification;
ACAudioRouteRouteAvailabilityChangedReceiverAvailableKey;
ACAudioRouteRouteAvailabilityChangedSpeakerAvailableKey;
ACAudioRouteRouteAvailabilityChangedBluetoothAvailableKey;
ACAudioInterruptNotification;

ACAudioSessionUserInfoKey;
ACAudioIsInterruptedUserInfoKey;
ACAudioShouldResumeUserInfoKey;
ACAudioWasSuspendedUserInfoKey; // Available only since i0OS 10.3

m ACAudioRouteChangedNotification: Invoked when the current audio route is changed.
Includes the user-info key. ACAudioRouteRouteChangedNotificationCurrentRouteKey:
whose value is an NSNumber wrapping the corresponding AudioRoute enum value.

m ACAudioRouteRouteAvailabilityChangedNotification: Invoked when the list of available
audio routes has been changed, for example, if the user is connected to a Bluetooth audio
device. Includes user-info keys to describe whether Receiver / Speaker / Bluetooth routes are
available:

Key:

Key:

Key:

ACAudioRouteRouteAvailabilityChangedReceiverAvailableKey
Value: NSNumber-wrapped boolean, 'True' for route available, 'False' for unavailable.

ACAudioRouteRouteAvailabilityChangedSpeakerAvailableKey
Value: NSNumber-wrapped boolean, 'True' for route available, 'False' for unavailable.

ACAudioRouteRouteAvailabilityChangedBluetoothAvailableKey
Value: NSNumber-wrapped boolean, 'True' for route available, 'False' for unavailable.

® ACAudiolnterruptNotification: Invoked when the system delivers an audio interruption. This
is relevant when CallKit is not used.

Key:

Key:

un-interrupted.

Key:

Key:

ACAudioSessionUserinfoKey
Value: AVAudioSession, the app’s AVAudioSession object.

ACAudiolsinterruptedUserinfoKey
Value: NSNumber-wrapped boolean, 'True' for audio being interrupted, 'False' for audio

ACAudioShouldResumeUserinfoKey

Value: NSNumber-wrapped boolean, 'True' for whether audio is allowed to resume in
the app, 'False' for audio should not resume. Only applicable for audio un-interrupted
notification.

ACAudioWasSuspendedUserinfoKey
Value: NSNumber-wrapped boolean, 'True' whether the interruption notification was
delivered as a result of app suspension, 'False' otherwise.

When using CallKit with the MVWebRTCNativeCall framework, the ACNativeCallService
automatically holds calls when the audio is interrupted, and un-holds these calls when
audio interruption ends. This requires the ACNativeCallService instance to be initialized
with the first call to [ACNativeCallService sharedInstance].

-53-

5. Use Case Examples WebRTC iOS Client SDK

5 Use Case Examples

This chapter includes use case examples for reference.

5.1 User Agent: Create Instance, Set server and Account

AudioCodesUA *phone = [AudioCodesUA getInstance];
[phone setServerConfig:@"webrtclab.audiocodes.com"
port:5080
serverDomain:@"example.com"
transport:ACTransportTCP
iceServers:nil];
[phone setAccount:@"John"
displayName:@"John Smith"
password:@"xxxxaxn
authName:@"jsmit"];

5.2 User Agent: Set Listeners (Callbacks)

phone.delegate = self;

- (void) loginStateChanged: (BOOL)isLogin cause: (NSString*)cause {
// Code to handles login-related events

}

- (void) incomingCall: (AudioCodesSession*)call {
// Code to handles incoming call event

5.3 User Agent Login: Connection to SBC Server and Login

// This will start connecting to SBC and will trigger
// the loginStateChanged delegate method
[phone login];

5.4 Make a Call, Set Call Delegate

BOOL useVideo = YES;
RemoteContact *remoteContact = [[RemoteContact alloc] init];
remoteContact.userName = @”Jane”;

AudioCodesSession *call = [phone call:remoteContact
withVideo:useVideo inviteHeaders:nil];

call.delegate = self;

- (void) callProgress: (AudioCodesSession*)call {
// Code to handle call state changes

}

- (void) callTerminated: (AudioCodesSession*)call {
// Code to handle call termination

}

- (void) cameraSwitched: (BOOL) frontCamera
// Code to handle camera switch

-54-

5. Use Case Examples WebRTC iOS Client SDK

5.5 Send DTMF During Call

[self.activeCall sendDtmf:DTMF 9];

5.6 Mute / Unmute During Call

MESE
NO;

self.activeCall.muteAudio

self.activeCall.muteVideo

5.7 Accept Incoming Call (with Video)

// To answer with video we first need to add local and / or remote
UIViews

// To the call for video rendering, and upon completion, answer
the call

[self.activeCall showVideoLocalView:localView
remoteView:remoteView completion:”{

[self.activeCall answer:nil];

1

5.8 Delayed-offer: Treat incoming calls as video calls

// Incoming delayed-offer calls can optionally be treated as incoming
video calls. We might need this because there is no SDP to allow us to
determine whether this is a video call or not.

// In order to perform this, we can call showVideo even with no
renderers.

func incomingCall(call: AudioCodesSession!, infoAlert:
ACInfoAlertAttributes!) {

if call.isDelayedOffer && treatDelayedOfferAsIncomingVideoCall ({
call.showVideoLocalView (nil, remoteView: nil) {
// code to handle incoming video call

}
} else {
// code to handle regular incoming call

5.9 Reject Incoming Call

[incomingCall reject:nil];

5.10 Terminate a Call

[activeCall terminate];

-55-

5. Use Case Examples WebRTC iOS Client SDK

5.11 Use of Video

To use video, the following conditions must apply:
B To capture and send video from the camera, the application GUI should include UIView for
rendering local video.

B Todisplay video from the remote side, the application GUI should include a UIView for
rendering remote video.

B To use video during the call, use the showVideolocalView:remoteVide:completion method,
and pass the views as parameters. These can be passed as nil values; however, note that local
video will NOT be captured and sent unless there is a UlView to render it, for privacy
reasons.

B The showVideolocalView:remoteVide:completion method can be called at any
time / state of the call, and it will internally perform the appropriate tasks. Notable cases:

° For incoming calls before answering: video rendering and camera capture is started, and
video media is added to the answer signal SDP.

° For active calls without video: video capture is started and rendered, and also media re-
negotiation (re-INVITE) is performed with renewed video SDP.

° Whenever the local renderer is nil (e.g., when discarding the call GUI, but keeping the
call active), the sent video is an RTP stream of blank frames.

5.12 Using Built-In CallKit Support — ACNativeCallService

The following examples are provided in Swift:

1. Import the MVWebRTCNativeCall framework:
import MVWebRTCNativeCall
2. Configuring the CXProviderConfiguration object:

lazy var providerConfiguration: CXProviderConfiguration = {
let appDisplayName =
Bundle.main.infoDictionary! ["CFBundleDisplayName"] as!

String

let config = CXProviderConfiguration (localizedName:
appDisplayName)

config.supportsVideo = true

config.supportedHandleTypes =
[CXHandle.HandleType.phoneNumber]

config.maximumCallGroups = 4

config.iconTemplateImageData = UIImage.init (named:
"iconMask") ?.pngData ()

config.ringtoneSound = "incoming call ringtone.wav"
if #available (i0S 11.0, *) {
config.includesCallsInRecents = true

}

return config

}O

-56-

5. Use Case Examples WebRTC iOS Client SDK

3.

Initializing the API:

ACNativeCallService.sharedInstance () .initiate (with:
self.providerConfiguration)

Displaying an incoming call using CallKit (most common approach) upon incoming call event
from the SDK:

func incomingCall(call: AudioCodesSession!, infoAlert:

ACInfoAlertAttributes!) {

ACNativeCallService.sharedInstance () .reportNewIncomingCall (
call,

localizedCallerName: call.remoteNumber.displayName,
answerCallback: { () ->
ACCallKitExecutionBlockResult in
// Code to update UI for call accept if
necessary
return ACCallKitExecutionBlockResult.undefined
by
rejectCallback: { () —->
ACCallKitExecutionBlockResult in
// Code to update UI for call reject if
necessary
return ACCallKitExecutionBlockResult.undefined

)
{ (_, error: Error?) in
// Handle error reporting incoming call to the
system
}
}
Displaying an incoming call using CallKit, with the customized answer / reject handling with

additional SIP headers, upon incoming call event from SDK. (Notice the change in the callback
return values.):

func incomingCall(call: AudioCodesSession!, infoAlert:
ACInfoAlertAttributes!) ({

let answerHeaders = ["Custom-Answer-Header": " Custom
Header Value - Answer"]

let rejectHeaders = ["Custom-Reject-Header": " Custom
Header Value - Reject"]
ACNativeCallService.sharedInstance () .reportNewIncomingCall (

call,

localizedCallerName: call.remoteNumber.displayName,

answerCallback: { () ->
ACCallKitExecutionBlockResult in

// Code to update UI for call accept if

necessary
call.answer (answerHeaders)
return ACCallKitExecutionBlockResult.fulfill
by
rejectCallback: { () —->

ACCallKitExecutionBlockResult in

// Code to update UI for call reject if
necessary

-57-

5. Use Case Examples WebRTC iOS Client SDK

call.reject (rejectHeaders)
return ACCallKitExecutionBlockResult.fulfill

)
{ (_, error: Error?) in
// Handle error reporting incoming call to the
system
}
}

6. Initiating an outgoing call:
let remoteContact = RemoteContact ()

// configure the remoteContact object

if let call = self.phoneUA?.call (remoteContact, withVideo:
true, inviteHeaders: nil) {

ACNativeCallService.sharedInstance () .initiateStartCall (
call,
callerName: remoteContact.displayName,
actionCallback: { () —->

ACCallKitExecutionBlockResult in

// Optional code to update UI for call
initiation

return ACCallKitExecutionBlockResult.undefined

)
{ (, error: Error?) in
// Handle error initiating call with CallKit

}
7. Reporting call updates on call progress events:

func callProgress(call: AudioCodesSession!) {

ACNativeCallService.sharedInstance () .reportCallUpdated(call
)
if call.isOutgoing {
if isFirstTimeACCallStateCalling {

ACNativeCallService.sharedInstance () .reportCallStartedConne
cting(call)

}
if isFirstTime ACCallStateConnected {

ACNativeCallService.sharedInstance () .reportCallEstablished (
call)

}

8. Terminating a call:

ACNativeCallService.sharedInstance () .initiateEndCall (
call,
actionCallback: nil,
result: { (, error: Error?) in
if (error != nil) {

-58 -

5. Use Case Examples WebRTC iOS Client SDK

call.terminate ()

)
9. Reporting a terminated call (required always when the callTerminated delegate is invoked):

func callTerminated(call: AudioCodesSession!) {

ACNativeCallService.sharedInstance () .reportCallTerminated (
call,

terminationStatusCode:
Int32((call?.terminationInfo. termination)!.rawValue))

)

5.13 Using CallKit Manually

When using CallKit manually, one has to be familiar with the CallKit-related use cases and flows for
the various actions related to VOIP calls.

For further details on utilizing CallKit in the application, please refer to the official CallKit
documentation.

The following tasks should be performed with the SDK when using CallKit manually:

1. Incoming Calls: When reporting a new incoming call to the CXProvider, use the
WebRTCAudioManager to setup audio:
let audioManager = WebRTCAudioManager.getInstance ()

audioManager?.useManualAudio = true
audioManager?.configureAudioSession (ACAudioPreset.VOIP)
let cxUpdate: CXCallUpdate = ... // Create a corresponding
CXCallUpdate

provider.reportNewIncomingCall (

with: call.callUUID,

update: cxUpdate)
{ (error: Error?) in

// handle error reporting incoming call
}

2. Answering Calls: In performAnswerCallAction, use the ACAudioPreset.VOIP configuration:
func provider(_ provider: CXProvider, perform action:
CXAnswerCallAction) {

// configure audio session
audioManager?.configureAudioSession (ACAudioPreset.VOIP)
// Get the call object according to the action
let call: AudioCodesSession =
// perform the actual VOIP operation
call.answer (nil)
action.fulfill ()
}

3. Initiating outgoing calls: When initiating a new call, it is recommended to first invoke hold on
the current calls that are not held. Then, start the call by creating the new AudioCodesSession
object, and then request the transaction that would start the call with CallKit:

// hold current calls that are not held
// setup manual audio

-59-

https://developer.apple.com/documentation/callkit
https://developer.apple.com/documentation/callkit

5. Use Case Examples WebRTC iOS Client SDK

audioManager?.useManualAudio = true

// perform the outgoing call with the SDK

let remoteContact = RemoteContact ()

if let newCall = AudioCodesUA.getInstance()?.call (
remoteContact,
withVideo: true, inviteHeaders: nil

// create the CXTransaction that would initiate the
CallKit call

cxController.request (transaction) { (error: Error?) in
}
}

4. Handling call updates and outgoing call established: When the callProgress event of an
outgoing AudioCodesSession call arrives, with the connected state, the audio session
configuration should be of the VOIP preset, and CallKit should be notified with the call being
connected:

func callProgress(_ call: AudioCodesSession!) {
let provider = CXProvider ()
// report call update to CallKit
let callUpdate: CXCallUpdate =

provider.reportCall (with: call.callUUID, updated:
callUpdate)

if call.isOutgoing {

WebRTCAudioManager.getInstance () ?.configureAudioSession (ACA
udioPreset.VOIP)

if isFirstTimeCallingEvent {

provider.reportOutgoingCall (with:
call.callUUID,

startedConnectingAt: Date())
}
if isFirstTimeConnectedEvent ({

provider.reportOutgoingCall (with:
call.callUUID, connectedAt: Date())

}

}

5. Handling termination of all calls: When all calls are terminated, the audio session
configuration should become default:

WebRTCAudioManager.getInstance () ?.configureAudioSession (ACA
udioPreset.default)

6. CallKit’s events for activating / deactivating the audio session: CallKit integrates the app’s
audio with the system in such a way that it elevates the audio session’s priority, and starts or
stops it in conjunction with other calling apps or other calls within the app itself. When using
these methods, one must activate / deactivate the audio unit responsible for VOIP processing:

func provider (_ provider: CXProvider, didActivate
audioSession: AVAudioSession) {

WebRTCAudioManager.getInstance () ?.audioSessionDidActivate (a
udioSession)

WebRTCAudioManager.getInstance () ?.isAudioEnabled = true

-60 -

5. Use Case Examples WebRTC iOS Client SDK

func provider (provider: CXProvider, didDeactivate
audioSession: AVAudioSession) {

WebRTCAudioManager.getInstance () ?.audioSessionDidDeActivate
(audioSession)

WebRTCAudioManager.getInstance () ?.1isAudioEnabled =
false

}

7. Handling call operations (hold / mute / send DTMF): In the CXProviderDelegate methods for
performing the call actions, one must call the SDK methods for the corresponding actions. For
example, mute / unmute action:

func provider(provider: CXProvider, perform action:
CXSetMutedCallAction) {

let call: AudioCodesSession = ... // get the call
object according to the action

call.isAudioMuted = action.isMuted
// call the appropriate SDK method
action.fulfill ()

5.14 Responding to Remote Control Events — Genesys 3PCC API

1. Responding to an incoming call with the Alert-Info header data:

func incomingCall(call: AudioCodesSession!, infoAlert:
ACInfoAlertAttributes!) {

ACNativeCallService.sharedInstance () .reportNewIncomingCall (
call,
localizedCallerName: "",

answerCallback: { () ->
ACCallKitExecutionBlockResult in
// code to answer call from CallKit if enabled
return .fulfill
b

rejectCallback: { () ->
ACCallKitExecutionBlockResult in

// code to answer call from CallKit if enabled
return .fulfill

s

result: { (_,error: Error?) in
if infoAlert '= nil && infoAlert.delay >= 0 &&
infoAlert.autoAnswer && error == nil {

DispatchQueue.main.asyncAfter (deadline:
.now() + Double (infoAlert.delay), gos:
DispatchQoS.userInteractive) ({

// answer the call if not already
answered, update GUI

}

}

2. Responding to incoming Notify events that are associated with a call:

-61-

5. Use Case Examples

WebRTC iOS Client SDK

func callNotifyEvent(call: AudioCodesSession!, type:
CallNotifyEventType, dtmfString dtmf: String!) {
switch type {
case .ACCallNotifyEventTalk:
DispatchQueue.main.async {
if call.callState == .ACCallStateConnected {
// un-hold the call, update GUI
} else if !call.isOutgoing {
// answer the call, update GUI

}
break
case .ACCallNotifyEventHold:
DispatchQueue.main.async {
if call.callState == .ACCallStateConnected {
// hold the call, update GUI

}
break
case .ACCallNotifyEventDTMF:
DispatchQueue.global (gqos: .userInteractive).async {
/*
perform send DTMF for each character in the dtmf
string parameter. The interval between calls to sendDTMF is

the maximum of
ACConfiguration.getConfiguration () ?.dtmfOptions.intervalGap

and
ACConfiguration.getConfiguration () ?.dtmfOptions.duration

Y
}
break
case .ACCallNotifyEventConference:
// currently not supported
break
default:
break

-62-

5. Use Case Examples WebRTC iOS Client SDK

5.15

5.15.1

Push Notifications Use Cases

If the app uses the AudioCodesUA.setPushNotification APl with valid parameters, then for the
purpose of supporting incoming call push notifications, the SBC can initiate the delivery of two types
of push notifications to the app:

m Trigger SIP registration refresh (APNS notification)
m Notify Incoming call (VOIP Push notification)

The following use cases must be implemented in the application, in order to adhere to the following
rules:

B Apple enforces applications to display a CallKit incoming call screen immediately upon
receiving a VOIP push notification, before any SIP message arrives for the incoming SIP call.
This also means that when using push notifications, the application MUST use CallKit.

B SinceiOS 13, Apple does not allow using VOIP push for any other purposes than incoming
calls.

B Incoming call notifications indicate that there is a pending INVITE awaiting the application.
The application must wake up and perform REGISTER by calling login(), so that the SBC can
deliver the pending INVITE message. The SBC guarantees that the pending INVITE will be
delivered only after the REGISTER completes.

B The SBCis responsible for maintaining registrations, by initiating a registration-refresh push,
to wake the application to perform REGISTER. The application is expected to do so
automatically from every possible state, including being terminated.

B The registration expiration interval is large (at least 24 hours). Upon expiration or
UNnREGISTER, the SBC discards the device tokens, and deems the user unreachable for push
calls.

Handling the Application Transition to Background

The application must always perform a logout when going to the background state. However, when
using push notifications, the application has to avoid sending an un-REGISTER when calling logout,
for push functionality to work. Therefore, the application must call logout with forceClose = true in
that case:

func applicationDidEnterBackground(application: UIApplication) {

// begin a background task which will be ended at
loginStateChanged

shutdownBackgroundTask =
UIApplication.shared.beginBackgroundTask { [weak self] in

guard let self = self else { return }

UIApplication.shared.endBackgroundTask (self.shutdownBackgroundTask
)

self.shutdownBackgroundTask =
UIBackgroundTaskIdentifier.invalid

}
// 1if we use push notifications, logout without unREGISTER
let usingPushNotifications =
if usingPushNotifications ({
AudioCodesUA.getInstance () . logout (true)
} else {
AudioCodesUA.getInstance () . logout ()

-63 -

5. Use Case Examples WebRTC iOS Client SDK

5.15.2

5.15.2.1

Handling SIP Registration-Refresh Notifications

The application must be able to reliably wake-up and send a REGISTER from every possible state,
without being dependent on user interactions to do so. This is not trivial for APNS push, and can be
achieved by using one of the following strategies:

Using Background (“silent”) APNS notifications

Pros:

1. Easiest to implement in the application.

2. Truly silent, has no requirements on presentation to the user in any way

Cons:

1. Thisis not reliable enough Background notifications are lower in priority, and their delivery
can be throttled in various conditions, especially after being sent multiple times per hour.

Requirements:

1. The application info.plist must include the remote-notification entry under
UlBackgroundModes.

2. The push server must be configured to send background notifications.

Refreshing registration upon receiving background APNS push notification:
func application (
__ application: UIApplication,
didReceiveRemoteNotification userInfo: [AnyHashable
Any],
fetchCompletionHandler completionHandler: @escaping
(UIBackgroundFetchResult) -> Void

) |
if let pushType = userInfo["push type"] as? String,
pushType == "REGISTER" {
// Here we perform login to refresh
registration
AudioCodesUA.getInstance () .login ()
}

completionHandler (.noData)

-64 -

5. Use Case Examples WebRTC iOS Client SDK

5.15.2.2 Using the Notification Service App Extension

Pros:

1.

This is by far the most reliable method. Notifications delivery is not throttled, and the
extension can use the SDK to refresh registration from every possible application state.

Cons:

1.

This is harder to implement. It requires implementing the App Extension, as well as sharing
SIP account and configuration information between the extension and the containing
application, so that the extension can call the SDK APIs to configure an AudioCodesUA
instance to perform login properly.

Automatic, but not entirely silent. The extension can automatically perform login, however
the notification must be displayed in some form to the user, even without requiring the user’s
interaction. For example, the notification alert can only have a text message, indicating that
SIP registration was refreshed successfully.

Requirements:

1.

Setting up the Notification Service App Extension, and shared storage with the application,
based on App Groups.

The extension must use the MVWebRTCFramework.xcframework bundle, which is extension-
safe, and must not use the MVWebRTCInterface.xcframework.

There should be a mechanism that would inform the extension, that the containing app is in
the foreground. That is because it is strongly advised that the extension does NOT perform a
REGISTER when the containing app is in the foreground and is managing registration as well.
Having these two processes performing registration in parallel can cause SIP registration
errors.

-65 -

5. Use Case Examples WebRTC iOS Client SDK

1. Notification Service Extension Class — Main Entry Point:

override func didReceive (
_ request: UNNotificationRequest,

withContentHandler contentHandler: (@escaping
(UNNotificationContent) -> Void

) |
self.contentHandler = contentHandler
self.bestAttemptContent =

(request.content.mutableCopy () as?
UNMutableNotificationContent)

guard let bestAttemptContent = bestAttemptContent else

return

}

// If this is a register refresh push, setup
AudioCodesUA and perform login.

if let pushType =
bestAttemptContent.userInfo["push type"] as? String,
pushType == "REGISTER" {

bestAttemptContent.title = "VOIP Registration"

/* If the containing application is in foreground, do
nothing in order not to interfere with its existing
registration. The containing application will handle the
notification. */

if sharedStorage.appInForeground {
contentHandler (bestAttemptContent)
return
}
// load AudioCodesUA account, device tokens, and
other configurations data from shared storage, and login.
// The content handler will be called from the
loginStateChanged delegate callback.
AudioCodesUA.getInstance () .setAccount (...)
AudioCodesUA.getInstance () .setServerConfig(...)

// Note that for setPushNotification.., the bundleId
parameter must be the bundle identifier of the CONTAINING

APP.
AudioCodesUA.getInstance () .setPushNotificationsTeamId(. .
-)
AudioCodesUA.getInstance () .regExpires =
ACConfiguration.getConfiguration () .localServerPort

// Listening to login state change events. We use
notification center because multiple instances of the
service extension can be active in parallel.

NotificationCenter.default.addObserver (self,
selector: #selector(loginStateChangedNotification(:)),
name: .ACUALoginStateChanged, object: nil)

AudioCodesUA.getInstance () .login ()

return

-66 -

5. Use Case Examples WebRTC iOS Client SDK

2. Notification Service Extension Class — Handling notification delivery in loginStateChanged:

@objc func loginStateChangedNotification(
notification: Notification) {

guard let userInfo = notification.userInfo else {

return

}

let isLogin =
userInfo[ACUALoginStateIsLoginUserInfoKey] as? Bool 2?7
false

let cause =
userInfo[ACUALoginStateCauseUserInfoKey] as? String 2?2 ""

// If cause isn't error, then this is our logout
event. In that case, finish.

if cause == ACUALoginChangedReasonDisconnected {
return
}

// login operation completed, so we shut down
AudioCodesUA. We force-close to avoid sending un-REGISTER.

NotificationCenter.default.removeObserver (self,
name: .ACUALoginStateChanged, object: nil)

AudioCodesUA.getInstance () .logout (true)
if isLogin {
// For a successful registration event, it
should be as non-intrusive as possible, so no sound needed.
bestAttemptContent?.sound = nil

bestAttemptContent?.body = "Updated
registration to SIP host successfully."

} else {

bestAttemptContent?.body = "Not registered.
Cause: \ (cause)"

}
contentHandler (bestAttemptContent)
}
3. Notification Service Extension Class — Handling Expiration:
override func serviceExtensionTimeWillExpire () {

// Shut down AudioCodesUA

NotificationCenter.default.removeObserver (self,
name: .ACUALoginStateChanged, object: nil)

AudioCodesUA.getInstance () . logout (true)

bestAttemptContent?.body = "Timeout reached when
handling notification"

contentHandler (bestAttemptContent)

-67 -

5. Use Case Examples WebRTC iOS Client SDK

4. Main App — UlApplicationDelegate Relevant Methods — Coordinate Notification Handling
With The Extension

func application(application: UIApplication,

didFinishLaunchingWithOptions
launchOptions: [UIApplication.LaunchOptionsKey: Any]?

) —> Bool {

// In case of crash recovery, write the default value
for this flag

sharedStorage.storeAppInForeground (false)

func applicationWillEnterForeground(_ application:
UIApplication) {

sharedStorage.storeAppInForeground (true)

}

func applicationDidBecomeActive (application:
UIApplication) {

sharedStorage.storeAppInForeground (true)

}

func applicationDidEnterBackground(application:
UIApplication) {

sharedStorage.storeAppInForeground (false)

}

func applicationWillTerminate(application:
UIApplication) {

sharedStorage.storeAppInForeground (false)

-68 -

5. Use Case Examples WebRTC iOS Client SDK

5. Main App — UNUserNotificationCenterDelegate Relevant Methods — Coordinate Notification
Handling With The Extension

func userNotificationCenter (
_ center: UNUserNotificationCenter,
willPresent notification: UNNotification,
withCompletionHandler completionHandler: @escaping

(UNNotificationPresentationOptions) -> Void
) A

let userInfo =
notification.request.content.userInfo
if let pushType = userInfo["push type"] as? String,
pushType == "REGISTER" {
// Received register refresh notification in
Foreground. The extension did not handle this.

// Refreshing SIP Register from push notification
AudioCodesUA.getInstance () .login ()
}
completionHandler ([])
}
func userNotificationCenter (
__ center: UNUserNotificationCenter,
didReceive response: UNNotificationResponse,
withCompletionHandler completionHandler: (@escaping
() => Void
) |

let userInfo =
response.notification.request.content.userInfo

if let pushType = userInfo["push type"] as? String,
pushType == "REGISTER" {

// The user pressed the register refresh
notification alert. This notification was already handled
in the extension.

completionHandler ()
return

}

5.15.3 Handling Incoming Call Notifications

Handling incoming call notifications is performed by the following:

1. Parse call details from the notifications payload: caller name, caller display name (optional), is
the call video (optional)

2. Use the SDK to report an incoming CallKit call from the notification

3. Call AudioCodesUA.login() to perform REGISTER, after which the pending incoming INVITE will
arrive.

4. Upon the INVITE arrival, within the incomingCall delegate callback, use the
MVWebRTCNativeCall framework to call to ACNativeCallService.reportNewlncomingCall, to
associate the CallKit report of the push call to the incoming SIP call. See section 5.12.

@ If the push payload doesn’t include information that this is a video call, then the SDK
updates it automatically in step #4.

-69 -

5. Use Case Examples WebRTC iOS Client SDK

PKPushRegistryDelegate — Handling Incoming Call Notification
func pushRegistry (
_ registry: PKPushRegistry,
didReceiveIncomingPushWith payload: PKPushPayload,
for type: PKPushType

let caller = RemoteContact ()

/*

Parse incoming call details from the payload. If no
SIP username is available, we must use a default one,
"unknown", in order to display the CallKit screen.

%)

caller.userName =
payload.dictionaryPayload["caller sip username"] as? String
?? "unknown"

// remove SIP domain name from the caller username

caller.userName =
caller.userName.components (separatedBy: "@").first

// obtain optional SIP display name

caller.displayName =
payload.dictionaryPayload["caller sip displayname"] as?
String

// obtain optional video flag value

let isVideoCallString =
(payload.dictionaryPayload["call has video"] as? String) 2?2
"false"

let isVideoCall = isVideoCallString == "true" ?
true : false

// Generate a CallKit call with the SDK. We must do
this immediately upon receiving the notification.

let acnotification =
ACIncomingCallPushNotification(caller: caller, hasVideo:
isVideoCall)

ACNativeCallService.sharedInstance () .report (acnotification!
, result: nil)
/*
Here we trigger the client to perform SIP
register.
After registration completes, an incoming SIP call
will arrive, corresponding to the push call.
upon the incoming SIP call, we will call the
ACNativeCallService reportIncomingCall,
which will automatically associate the SIP call to
the CallKit call that is generated here.
%)
AudioCodesUA.getInstance () .login ()

-70 -

5. Use Case Examples WebRTC iOS Client SDK

5.16

5.16.1

Handling Audio Interruptions and GSM Calls

When there are existing calls, and the application receives an audio interrupt, we distinguish
between whether CallKit is used or not:

Using CallKit

With CallKit, the application is granted the highest audio usage priority, and so during calls, it cannot
be interrupted by other audio playback from other apps. However, it might be interrupted by apps
with a similar level of priority: Either the native Phone app, or apps that use CallKit as well, and
receive incoming calls.

In that case, audio interruptions are managed as part of CallKit usage, and there is no special handling
required from the SDK perspective.

Call-related events that are integrated with other apps, either by switching from this app to a native
phone call, or by accepting a call from another CallKit app and holding the current call, are
automatically managed by the system, which either holds or unholds or terminate the call according
to the user’s input to the native Telephony GUI.

Note that the ACNativeCallService provides the best handling of audio interruptions automatically.

-71-

5. Use Case Examples WebRTC iOS Client SDK

5.16.2

Not Using CallKit

When not using CallKit, the app audio usage priority is lower, and might compete with other apps
that seek to obtain audio resources. It is the system’s responsibility to allocate audio resources to
different apps, and notify each app’s Audio-Session whether its audio resources are unavailable, or
become available again. This is done via audio interruption notifications.

The SDK API includes the ACAudiolnterruptNotification from WebRTCAudioManager (see section
4.4.2), which delivers the system’s audio interrupt notification in a streamlined manner.

Generally speaking, when not using CallKit and the audio session is interrupted, all established calls
must be put on hold, and all non-established calls must be terminated.

When audio interruption ends and the app may resume audio usage, the held calls may be resumed.
See example below:

func setupAudioInterruptObserver () {
NotificationCenter.default.addObserver (self,

selector:
#selector (handleAudioInterrupt (notification:)),

name:
.ACAudioInterrupt,

object: nil)

@objc func handleAudioInterrupt (notification: Notification) ({
guard let userInfo = notification.userInfo,

let isInterrupttionBegin =
userInfo[ACAudioIsInterruptedUserInfoKey] as? Bool,

let session = self.obtainActiveSesison ()

else {

return
}
if (isInterrupttionBegin) {

// hold the current call, notify user GUI that the

call is interrupted
session.hold(true)

// ...terminate all sessions that are not established
} else {

// unhold the current call

session.hold(false)

-72 -

5. Use Case Examples WebRTC iOS Client SDK

5.17

Binding SIP Connections

This demonstrates the usage described in section 3.1.2.13 of the setConnectionBinding method.

SIP connection binding forces the SIP account to reuse the current SIP connection for all outgoing
messages. To maintain proper operation, this also requires an enhancement to network change
handling.

See example below on how to configure SIP connection binding, and handling network change:

func getLocallIpAddressFamily () -> ACNetworkAddressFamily {
/*
Obtain the local ip-address family: "IPV4", "IPV6" or
"Unspecified"
NOTE: Applications should implement finding the ip
address family in the way most suited to their needs.

*/

func setupPhoneUA() {
self.phoneUA = AudioCodesUA.getInstance ()

/] .. Call SIP account setters before login
self.phoneUA?.setAccount (...
self.phoneUA?.setServerConfig(...

// Manage SIP connection binding
if shouldBindSipConnection {

// Defer binding to the currently established
connection, which would be agnostic to the IP-address family. This
is the recommended mode.

let attr =
ACNetworkConnectionAttributes.attr (withLocalAddressFamily:
.unspecified)

if !'shouldAutoRegister {

// If we make calls without registration, then we
must determine the ip-address family in advance.

attr.localAddressFamily =
getLocalIpAddressFamily ()

}

self.phoneUA?.setConnectionBinding (attr)

} else {

// Remove SIP connection binding from the SIP account

self.phoneUA?.setConnectionBinding (nil)

/] e
self.phoneUA?.login (shouldAutoRegister)

func networkHasChanged () {
/*
Determine the ip address family to pass down to the
network change handler.

-73 -

5. Use Case Examples WebRTC iOS Client SDK

Finding the ip-address family is optional, and is
important when using the setConnectionBinding API. Alternatively,
handleNetworkChange can receive a nil parameter.

%)
let ipAddressFamily = getLocalIpAddressFamily ()
let attr =
ACNetworkConnectionAttributes.attr (withLocalAddressFamily:
ipAddressFamily)

self.phoneUA?.handleNetworkChange (attr)

-74 -

International Headquarters
Naimi Park

6 Ofra Haza Street

Or Yehuda, Israel

Tel: +972-3-976-4000

Fax: +972-3-976-4040

AudioCodes Inc.

80 Kingsbridge Rd
Piscataway, NJ 08854, USA
Tel: +1-732-469-0880

Fax: +1-732-469-2298

Contact us: https://www.audiocodes.com/corporate/offices-worldwide
Website: https://www.audiocodes.com

©2024 AudioCodes Ltd. All rights reserved. AudioCodes, AC, HD VolP, HD VolP Sounds Better, IPmedia,
Mediant, MediaPack, What's Inside Matters, OSN, SmartTAP, User Management Pack, VMAS, VolPerfect,
VolPerfectHD, Your Gateway To VolP, 3GX, VocaNom, AudioCodes One Voice, AudioCodes Meeting
Insights, and AudioCodes Room Experience are trademarks or registered trademarks of AudioCodes
Limited. All other products or trademarks are property of their respective owners. Product specifications
are subject to change without notice.

Document #: LTRT-14094

X _ audiocodes

https://www.audiocodes.com/corporate/offices-worldwide
https://www.audiocodes.com/

	WebRTC iOS Client SDK API Reference Guide Ver. 1.3.7
	Table of Contents
	Notice
	Customer Support
	Stay in the Loop with AudioCodes
	Abbreviations and Terminology
	Related Documentation
	Document Revision Record
	Documentation Feedback

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Benefits

	2 iOS SDK
	2.1 Getting Started
	2.2 Installation
	2.3 Usage Notes
	2.4 Bitcode Support Deprecation
	2.5 Swift
	2.6 CallKit Framework
	2.7 Push Notifications
	2.8 App Extensions

	3 API Classes
	3.1 AudioCodesUA
	3.1.1 Standard Methods / Properties
	3.1.1.1 getInstance
	3.1.1.2 setServerConfig
	3.1.1.3 setAccount
	3.1.1.4 id <AudioCodesEventListener> delegate
	3.1.1.5 login:(BOOL)autoRegister
	3.1.1.6 login
	3.1.1.7 logout:(BOOL)forceClose
	3.1.1.8 logout
	3.1.1.9 call
	3.1.1.10 sendInstantMessage

	3.1.2 Advanced Methods / Properties
	3.1.2.1 SipHeadersDictionary* registerExtraHeaders
	3.1.2.2 SipHeadersDictionary* inviteExtraHeaders
	3.1.2.3 NSString* userAgent
	3.1.2.4 BOOL verifyServerCertificate
	3.1.2.5 NSString* caCertFilePath
	3.1.2.6 BOOL contactRewrite
	3.1.2.7 BOOL disconnectOnBrokenConnection
	3.1.2.8 int regExpires
	3.1.2.9 BOOL useSessionTimer
	3.1.2.10 ACLogLevel logLevel
	3.1.2.11 id<ACLoggerProtocol> logger
	3.1.2.12 handleNetworkChange
	3.1.2.13 setConnectionBinding
	3.1.2.14 NSArray <AudioCodesSession*>* sessions
	3.1.2.15 setPushNotification
	3.1.2.16 setOauthToken

	3.2 AudioCodesSession
	3.2.1 Standard Methods / Properties
	3.2.1.1 int sessionID;
	3.2.1.2 answer
	3.2.1.3 reject
	3.2.1.4 Terminate
	3.2.1.5 BOOL muteAudio (getter=isAudioMuted)
	3.2.1.6 BOOL muteVideo (getter=isVideoMuted)
	3.2.1.7 sendDTMF
	3.2.1.8 BOOL isOutgoing
	3.2.1.9 BOOL hasVideo
	3.2.1.10 CallState
	3.2.1.11 TerminationInfo terminationInfo
	3.2.1.12 NSInteger duration
	3.2.1.13 BOOL isLocalHold
	3.2.1.14 BOOL isRemoteHold
	3.2.1.15 BOOL isDelayedOffer
	3.2.1.16 id userData
	3.2.1.17 hold
	3.2.1.18 switchCamera
	3.2.1.19 (void) showVideoLocalView:(UIView*)localView remoteView:(UIView*)remoteView completion:(ACTaskCompletion)completion
	3.2.1.20 stopVideo
	3.2.1.21 id<AudioCodesSessionEventListener> delegate
	3.2.1.22 RemoteContact *remoteNumber
	3.2.1.23 transferCall (Blind Transfer)
	3.2.1.24 attendedTransferCall (Attended Transfer)
	3.2.1.25 RemoteContact *transferContact
	3.2.1.26 CallTransferState transferState
	3.2.1.27 NSUUID *callUUID
	3.2.1.28 sendInfo

	3.3 WebRTCAudioManager
	3.3.1 Notes on iOS Audio Routing
	3.3.2 Notes on Using CallKit
	3.3.3 Standard Methods / Properties
	3.3.3.1 getInstance
	3.3.3.2 id <WebRTCAudioRoutesListener> delegate
	3.3.3.3 setAudioRoute
	3.3.3.4 getAudioRoute
	3.3.3.5 getAvailableAudioRoutes
	3.3.3.6 overrideAudioRouteToSpeaker
	3.3.3.7 routeAudioToEnableBluetooth

	3.3.4 Manual Audio Management
	3.3.4.1 BOOL useManualAudio
	3.3.4.2 BOOL audioEnabled
	3.3.4.3 setActiveAudioSession
	3.3.4.4 configureAudioSession
	3.3.4.5 audioSessionDidActivate
	3.3.4.6 audioSessionDidDeActivate

	3.4 ACConfiguration
	3.4.1 Standard Methods / Properties
	3.4.1.1 getConfiguration
	3.4.1.2 NSString *version
	3.4.1.3 int localServerPort
	3.4.1.4 DTMFOptions* dtmfOptions
	3.4.1.5 VideoConfiguration* videoConfiguration

	3.5 Video Configuration
	3.5.1 Camera Parameters

	3.6 DTMFOptions
	3.6.1 DTMF Parameters

	3.7 RemoteContact
	3.7.1 Standard Methods / Properties
	3.7.1.1 NSString *displayName
	3.7.1.2 NSString *userName
	3.7.1.3 NSString *domain

	3.8 ACAlertInfoAttributes
	3.8.1 Standard Methods / Properties
	3.8.1.1 BOOL autoAnswer
	3.8.1.2 NSInteger delay

	3.9 ACNetworkConnectionAttributes
	3.9.1 Standard Methods / Properties
	3.9.1.1 ACNetworkAddressFamily localAddressFamily

	3.10 TerminationInfo
	3.10.1 Properties
	3.10.1.1 CallTermination termination
	3.10.1.2 NSInteger sipStatusCode
	3.10.1.3 NSString *sipStatusText
	3.10.1.4 NSString *sipReasonHeaderValue
	3.10.1.5 NSString *sipMessage

	3.11 ACNativeCallService
	3.11.1 Class Type Definitions
	3.11.1.1 typedef NS_ENUM (NSInteger, ACCallKitExecutionBlockResult)
	3.11.1.2 typedef ACCallKitExecutionBlockResult (^ActionExecutionBlock)(void);
	3.11.1.3 typedef void (^ACCallKitTaskSetupCompletion)(NSArray * _Nullable actionUUIDs, NSError * _Nullable error)

	3.11.2 Standard Methods / Properties
	3.11.2.1 sharedInstance
	3.11.2.2 BOOL usingCallKit
	3.11.2.3 BOOL callGroupSupported
	3.11.2.4 initiateWithConfiguration:(CXProviderConfiguration*)config
	3.11.2.5 invalidate
	3.11.2.6 reportNewIncomingCall
	3.11.2.7 reportCallTerminated
	3.11.2.8 reportCallUpdated
	3.11.2.9 reportCallStartedConnecting
	3.11.2.10 reportCallEstablished
	3.11.2.11 initiateStartCall
	3.11.2.12 initiateAnswerCall
	3.11.2.13 initiateEndCall
	3.11.2.14 initiateHoldCall
	3.11.2.15 initiateMuteCall
	3.11.2.16 initiateSendDTMFCall
	3.11.2.17 isCallAssociatedWithNative

	4 API Callbacks / Delegate Protocols / Notifications
	4.1 AudioCodesEventListener
	4.1.1 Login State Changed Event
	4.1.2 Incoming Call Event
	4.1.3 Incoming Instant Message Event
	4.1.4 Outgoing Instant Message Status Update

	4.2 AudioCodesSessionEventListener
	4.2.1 callTerminated
	4.2.2 callProgress
	4.2.3 callNotifyEvent
	4.2.4 cameraSwitched
	4.2.5 incomingInfo

	4.3 WebRTCAudioRoutesListener
	4.3.1 audioRoutesChanged
	4.3.2 currentAudioRouteChanged

	4.4 NSNotifications
	4.4.1 AudioCodesSession Notifications
	4.4.2 WebRTCAudioManager Notifications

	5 Use Case Examples
	5.1 User Agent: Create Instance, Set server and Account
	5.2 User Agent: Set Listeners (Callbacks)
	5.3 User Agent Login: Connection to SBC Server and Login
	5.4 Make a Call, Set Call Delegate
	5.5 Send DTMF During Call
	5.6 Mute / Unmute During Call
	5.7 Accept Incoming Call (with Video)
	5.8 Delayed-offer: Treat incoming calls as video calls
	5.9 Reject Incoming Call
	5.10 Terminate a Call
	5.11 Use of Video
	5.12 Using Built-In CallKit Support – ACNativeCallService
	5.13 Using CallKit Manually
	5.14 Responding to Remote Control Events – Genesys 3PCC API
	5.15 Push Notifications Use Cases
	5.15.1 Handling the Application Transition to Background
	5.15.2 Handling SIP Registration-Refresh Notifications
	5.15.2.1 Using Background (“silent”) APNS notifications
	5.15.2.2 Using the Notification Service App Extension

	5.15.3 Handling Incoming Call Notifications

	5.16 Handling Audio Interruptions and GSM Calls
	5.16.1 Using CallKit
	5.16.2 Not Using CallKit

	5.17 Binding SIP Connections

