
 

 

Configuration Note 
AudioCodes Mediant™ Software Session Border Controller (SBC) Series 

Automatic Provisioning via 
Cloud-Init  
Mediant Virtual Edition (VE) SBC 

Mediant Cloud Edition (CE) SBC 

Version 7.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 
 
 
 
 
 
 
 
 
 

 
 



Version 7.2 3 Automatic Provisioning via Cloud-Init 

Configuration Note Contents 

 

Table of Contents 
1 Introduction ......................................................................................................... 7 

1.1 Supported Environments ........................................................................................ 7 
1.2 Boot Sequence ....................................................................................................... 7 

2 “Automatic Configuration” Data ........................................................................ 9 

2.1 #ini-file .................................................................................................................... 9 
2.2 #ini-url .................................................................................................................. 10 
2.3 #ini-s3................................................................................................................... 10 
2.4 #network-if ............................................................................................................ 12 
2.5 #dhcp-address ...................................................................................................... 13 
2.6 #no-dhcp-address ................................................................................................ 13 
2.7 #static-route.......................................................................................................... 14 
2.8 #customer-id and #license-key ............................................................................. 14 
2.9 #ini-default ............................................................................................................ 14 
2.10 #ini-incremental .................................................................................................... 14 
2.11 #cloud-end ........................................................................................................... 15 
2.12 #write-factory ........................................................................................................ 15 

3 SSH Public Key ................................................................................................. 17 

4 Network Configuration in Amazon EC2 Environment .................................... 19 

5 Automatic Instance Provisioning..................................................................... 21 

6 Config-drive Emulation ..................................................................................... 23 

7 HEAT Orchestration Templates ....................................................................... 25 

  
  



 

Configuration Note 4 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank. 

 
 
 



Configuration Note Notices 

Version 7.2 5 Automatic Provisioning via Cloud-Init 

 

Notice 
Information contained in this document is believed to be accurate and reliable at the time of 
printing. However, due to ongoing product improvements and revisions, AudioCodes cannot 
guarantee accuracy of printed material after the Date Published nor can it accept responsibility 
for errors or omissions. Updates to this document can be downloaded from 
https://www.audiocodes.com/library/technical-documents. 

This document is subject to change without notice. 

Date Published: September-06-2018 

 

WEEE EU Directive 
Pursuant to the WEEE EU Directive, electronic and electrical waste must not be disposed of 
with unsorted waste. Please contact your local recycling authority for disposal of this product. 

Customer Support 
Customer technical support and services are provided by AudioCodes or by an authorized 
AudioCodes Service Partner. For more information on how to buy technical support for 
AudioCodes products and for contact information, please visit our website at 
https://www.audiocodes.com/services-support/maintenance-and-support.  

Abbreviations and Terminology 
Each abbreviation, unless widely used, is spelled out in full when first used. 

Document Revision Record 

LTRT Description 

28660 Initial document release for Version 7.2. 

28661 Minor formatting changes. 

28662 #write-factory hashtag added; formatting (corporate logos and URLs) 
 

Documentation Feedback 
AudioCodes continually strives to produce high quality documentation. If you have any 
comments (suggestions or errors) regarding this document, please fill out the Documentation 
Feedback form on our website at https://online.audiocodes.com/documentation-feedback. 

  

https://www.audiocodes.com/library/technical-documents
https://www.audiocodes.com/services-support/maintenance-and-support
https://online.audiocodes.com/documentation-feedback


 

Configuration Note 6 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank. 

 



Configuration Note 1. Introduction  

Version 7.2 7 Automatic Provisioning via Cloud-Init 

1 Introduction 
This document describes how to automatically provision AudioCodes Mediant Virtual Edition 
(VE) and Mediant Cloud Edition (CE) Session Border Controllers (SBCs) that are deployed 
in a private / public cloud environment. 

1.1 Supported Environments 
The SBC provides native support for automatic provisioning in the following cloud 
environments: 
 OpenStack 
 Amazon EC2 
 Azure 
Other environments (e.g. VMware or KVM) are supported via “config-drive emulation” – as 
described in Chapter 6. 

1.2 Boot Sequence 
The SBC performs the following actions upon the first boot: 
 Attempts to acquire an IP address on each available network interface via the DHCP 

server. 
 Identifies the environment that it runs on (e.g. OpenStack, Amazon, VMware etc) 
 Checks for presence of local config-drive and attempts to read “automatic 

configuration” from it. 
 Checks for presence of cloud meta-data service (http://169.254.169.254) and attempts 

to read from it “automatic configuration” data and SSH public key. 
 Processes acquired “automatic configuration” data. 
 If one of the supported cloud environments is detected (as described in Section 1.1) 

memorizes network configuration acquired via the DHCP server. 
 Stores configuration (ini file) and all other elements from “automatic configuration” 

data in persistent storage. 
 Continues normal boot sequence. 
 
Consequent reboots do not execute the above sequence except in the following cases: 
 The SBC is restored to the “factory defaults” configuration (via “write factory” CLI 

command). 
 New SBC instances are created from the snapshot of another SBC instance. 

  

http://169.254.169.254/


 

Configuration Note 8 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank 



Configuration Note 2. “Automatic Configuration” Data  

Version 7.2 9 Automatic Provisioning via Cloud-Init 

2 “Automatic Configuration” Data 
The SBC uses customized cloud-init implementation to acquire “automatic configuration” 
data. The data may be provided in one of the following ways: 
 User-data on cloud meta-data service (http://169.254.169.254) 
 User-data on local config-drive 
 
When cloud meta-data service is used, the following conditions should be fulfilled: 
 The SBC is able to acquire an IP address via DHCP on at least one network interface. 
 Meta-data service is accessible via the interfaces on which IP addresses were 

acquired (via either implicit or explicit routing rules). 
 
“Automatic configuration” data should be formatted as follows: 
#hashtag1 
<data1> 
#hashtag2 
<data2> 

 
The following hashtags are supported: 
 #ini-file – configuration file 
 #ini-incremental – incremental configuration file 
 #ini-default – default configuration file (AKA “client defaults”) 
 #customer-id, #license-key – customer ID and customer-specific license key 
 #dhcp-address. #no-dhcp-address – to override default behavior concerning IP 

addresses acquired via DHCP 
 #network-if – to customize configuration of network interfaces 
 #static-route – to customize configuration of static routes 
 #cloud-end – indicates the end of “automatic configuration” data 
 

2.1 #ini-file 
#ini-file hashtag is used to specify the SBC configuration (in ini file format): 
 
#ini-file 
 [SYSTEM Params] 
SyslogServerIP = 10.8.12.50 
EnableSyslog = 1 
TelnetServerEnable = 0 
SSHServerEnable = 1 

 
If the provided configuration includes InterfaceTable, it is applied “as is”, essentially 
overriding any network configuration that was acquired via the DHCP. In such case, it is 
mandatory to have the exact match between the actual SBC instance configuration and the 
network configuration in ini file. For example, if there are three network interfaces, the ini file 
should have three physical ports and typically three Ethernet groups, devices/VLANs and 
interfaces. 

http://169.254.169.254/


 

Configuration Note 10 Document #: LTRT-28662 

 Mediant VE/CE 

If the provided configuration does not include an InterfaceTable, the SBC uses IP addresses 
acquired via the DHCP to automatically populate an Interface table with the relevant 
information as follows: 
 First interface is assumed to be of type “OAM + Media + Control” and is named 

“O+M+C” 
 Additional interfaces are assumed to be of type “Media + Control” and are named “if 

2”, “if 3” etc. 
 If the ini file contains HARemoteAddress parameter, the last interface is assumed to 

be of type “Maintenance” and is named “HA” 
 Any interface that fails to acquire an IP address via DHCP is assigned with a 

temporary IP address – “192.168.<i>.100” 
 

 

Note: If the provided configuration does not include InterfaceTable, it is recommended 
to also remove from it the following tables: PhysicalPortsTable, EtherGroupTable, 
DeviceTable; as they will anyway be implicitly removed and generated based on the 
actual interfaces connected to the SBC instance. 

 

2.2 #ini-url 
#ini-url hashtag is used to specify the location on the external file server where the SBC 
configuration (ini file format) is stored. The following protocols are supported: HTTP, FTP 
and SFTP. 
 
The syntax is as follows: 
#ini-url 
http://10.4.220.50/sbc/config.ini 

 

2.3 #ini-s3 
#s3-url hashtag is used to specify location on Amazon S3 cloud storage where the SBC 
configuration (ini file format) is stored. This is very useful for the Amazon EC2 environment 
that limits the size of user-data block to 16 KB and therefore makes it impossible to include 
large ini files via the #ini-file hashtag. 
 
The syntax is as follows: 
#ini-s3 
region us-west-2 
bucket ac-a1 
file sbc.ini 

 
Where: 
 <region> – specifies name of the region, e.g. us-west-2 
 <bucket> – specifies name of the S3 bucket 
 <file> – specifies the file name; if file is located inside directory use the full path 

instead – e.g. “file dir/sbc.ini” 
  

http://10.4.220.50/sbc/config.ini


Configuration Note 2. “Automatic Configuration” Data  

Version 7.2 11 Automatic Provisioning via Cloud-Init 

You must create a proper IAM role and assign it to the SBC instance to allow access to the 
S3 bucket. For example, use the following IAM role and policy to enable access to ini files 
stored in “ac-a1” bucket. 
 
IAM > Roles > SbcS3Access 
Permissions: 
Policy Name: AccessINIBucket 
 
IAM > Policies > AccessINIBucket 
{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "s3:ListAllMyBuckets" 
            ], 
            "Resource": "arn:aws:s3:::*" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "s3:ListBucket", 
                "s3:GetBucketLocation" 
            ], 
            "Resource": "arn:aws:s3:::ac-a1" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "s3:PutObject", 
                "s3:GetObject", 
                "s3:DeleteObject" 
            ], 
            "Resource": "arn:aws:s3:::ac-a1/*" 
        } 
    ] 
} 

 
  



 

Configuration Note 12 Document #: LTRT-28662 

 Mediant VE/CE 

2.4 #network-if 
It is possible to complement/override automatic IP address assignment (via DHCP) as 
described above by using #network-if hashtag. The syntax is as follows: 
 
#network-if 
<idx> <name> <app> <ip> <prefix> <default gateway> <dns> <mtu> 

 
Where: 
 <idx> - network interface index, starting from 0 
 <name> - interface name (without spaces) 
 <app> - interface application type, as per InterfaceTable_ApplicationTypes; 

The most common values are as follows: 
• 6 – O+M+C 
• 5 – M+C 
• 99 – Maintenance (HA) 

 <ip> - IPv4 address 
 <prefix> - prefix length 
 <default gateway> - default gateway or “0.0.0.0” if not defined 
 <dns> - DNS server or “0.0.0.0” if not defined 
 <mtu> - maximum transmission unit (MTU) size 
 
Every line in #network-if section should have EXACTLY eight tokens. 
Any value except for <idx> may be omitted by using "-" (dash) instead of it. Only values that 
differ from "-" (dash) will be applied on top of the configuration acquired via the DHCP server. 
It is also perfectly valid to specify only SOME indexes in #network-if section – thus overriding 
/ complementing configuration of specific interfaces only. 
 
For example: 
 To specify an alternative name of the 1st network interface (instead of default 

“O+M+C”) use the following syntax: 
#network-if 
0 LAN - - - - - - 

 To change the network types of interfaces for the SBC instance that has three network 
interfaces; however the second interface (and not 3rd) should be used as 
maintenance, use the following syntax: 
#network-if 
0 - 6 - - - - - 
1 - 99 - - - - - 
2 - 5 - - - - - 

 To specify the IP address for the second interface (that is connected to the network 
which lacks a DHCP service) use the following syntax: 
#network-if 
1 - - 10.4.2.50 16 10.4.0.1 - - 

  



Configuration Note 2. “Automatic Configuration” Data  

Version 7.2 13 Automatic Provisioning via Cloud-Init 

 To define names and types for three interfaces and fully specify the IP configuration 
for the second interface (that is connected to the network that lacks a DHCP service) 
use the following syntax: 
#network-if 
0 LAN 6 - - - - - 
1 HA 99 10.4.2.50 16 10.4.0.1 0.0.0.0 - 
2 WAN 5 - - - - - 

 
When #network-if is used to specify types of specific network interfaces, the implicit network 
type configuration behaves as follows: 
 If the OAM interface is not explicitly specified by the user, the first interface with an 

unspecified type or of type M+C / C / M is assumed to handle OAM traffic (and it’s type 
is changed accordingly to O+M+C, O+C or O+M). 

 If HARemoteAddress parameter is present in the configuration data (ini file) and the 
maintenance interface is not explicitly specified by the user, the last interface that 
doesn’t handle OAM traffic is assumed to be of type ‘Maintenance/HA’. This implies 
that if, for example, you only have two interfaces and specify that the second interface 
handles OAM traffic, the first interface will become the Maintenance/HA. Of course 
you may explicitly specify types of all interfaces – and not rely on implicit logic; 
however, it’s not mandatory. 

 

 
Note: This hashtag is not applicable for the Amazon EC2 environment. 

 

2.5 #dhcp-address 
The SBC determines whether it’s deployed in a cloud environment or not by checking the 
availability of the cloud meta-data service (http://169.254.169.254). If the service is not 
available, it assumes that it’s deployed in a “pure virtual” (non-cloud) environment and does 
not memorize the network configuration acquired via the DHCP server. 
The above described behavior may be overridden by specifying #dhcp-address hashtag in 
the “automatic configuration” data. The hashtag has no “body” and forces the SBC to 
memorize the network configuration acquired via the DHCP server regardless of the cloud 
meta-data service availability: 
 
#dhcp-address 
 

For example, you may use this hashtag to force the SBC to memorize network configuration 
acquired via the DHCP server in environments that lack the cloud meta-data service and use 
config-drive instead. 

2.6 #no-dhcp-address 
#no-dhcp-address hashtag may be used to restore SBC snapshots in the cloud environment, 
while preserving network configuration as specified in the snapshot. Without this option, the 
SBC will acquire IP addresses via the DHCP server and will use these new addresses 
instead of the IP addresses specified in the snapshot. 

http://169.254.169.254/


 

Configuration Note 14 Document #: LTRT-28662 

 Mediant VE/CE 

2.7 #static-route 
#static-route hashtag may be used to append custom static routes to the configuration 
acquired via the DHCP server. The syntax is as follows: 
 
#static-route 
<idx> <ip> <prefix> <via> 

 
Where: 
 <idx> - network interface index, starting from 0 
 <ip> - destination IP address 
 <prefix> - destination prefix length 
 <via> - IP address of the gateway/router 
 
For example: 
 To add static route to 10.3.0.0 subnet on 1st interface use the following: 

#static-route 
0 10.3.0.0 16 10.4.0.1 

2.8 #customer-id and #license-key 
Customers who purchased customer-specific bulk licenses from AudioCodes should use 
#customer-id and #license-key hashtags to provision the correct SBC license. The syntax is 
as follows: 
 
#customer-id 
0123456789 
#license-key 
okRTr5topwYRa4Nu6xkiu6Z3nAxzcOlc80N... 

 
Make sure that you specify both #customer-id and #license-key hashtags in the “automatic 
configuration” data; otherwise the license will not be properly applied. 

2.9 #ini-default 
#ini-default hashtag specifies configuration data (using ini file syntax) that is stored in 
separate persistent storage (AKA client-defaults) and is not removed when new configuration 
data (e.g. ini file) is loaded on the SBC. In essence, values provided in this block of 
configuration data become new “default values” for corresponding parameters. 

2.10 #ini-incremental 
#ini-incremental hashtag is very similar to the #ini-file hashtag; however, configuration data 
specified in it is applied “on top” of the existing SBC configuration instead of overriding it. 
SBC images (QCOW2, AMI) published by AudioCodes do not contain configuration data – 
therefore this tag is not really useful. However customers may create snapshots of the SBC 
– with some pre-defined configuration – and use them to create new SBC instances. In such 
cases, #ini-incremental hashtag may be used to adjust the image configuration instead of 
specifying a new configuration “from scratch”. 



Configuration Note 2. “Automatic Configuration” Data  

Version 7.2 15 Automatic Provisioning via Cloud-Init 

2.11 #cloud-end 
Any hashtag that starts with #cloud- (for example, #cloud-end) indicates the end of 
“automatic configuration” data. It may be needed for cloud / orchestrator implementations 
that inject custom Linux shell code into user-data. In such cases, the #cloud-end hashtag 
effectively separates between a meaningful configuration provided by the user and an 
automatic configuration injected by the orchestrator and is irrelevant to the SBC. 

2.12 #write-factory 
The #write-factory hashtag returns the SBC to its factory defaults, erasing all existing 
configuration, including current network configuration and the local users table. It may be 
used to regain access to the SBC if the administrator forgets the login credentials or is unable 
to access it (for whatever reason). 
 

  



 

Configuration Note 16 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank. 

  



Configuration Note 3. SSH Public Key  

Version 7.2 17 Automatic Provisioning via Cloud-Init 

3 SSH Public Key 
The SBC deployed in the cloud environment extracts the SSH public key from the cloud 
meta-data service and configures it as a means for management for user authentication (e.g. 
for user Admin). In addition to this, it automatically enables the SSH protocol for connectivity 
to the CLI management interface. 

  



 

Configuration Note 18 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank. 

  



Configuration Note 4. Network Configuration in Amazon EC2 Environment  

Version 7.2 19 Automatic Provisioning via Cloud-Init 

4 Network Configuration in Amazon EC2 
Environment 
The SBC deployed in the Amazon EC2 environment supports multiple network interfaces 
(ENIs) and both primary and secondary IP addresses. Primary IP addresses are acquired 
via the DHCP server and are assigned in the same way as in the OpenStack environment. 
Secondary IP addresses are acquired from the EC2 meta-data service and assigned after 
primary addresses using “if X_Y” naming convention (e.g. “if 1_1”). Note however that 
#network-if hashtag may be used to modify the configuration of primary IP addresses only. 
In addition to the above, the SBC deployed in the Amazon EC2 environment automatically 
discovers its public IP address(es) and configures it/them accordingly in the NATTranslation 
table – to enable the proper NAT address translation. 

  



 

Configuration Note 20 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank. 

  



Configuration Note 5. Automatic Instance Provisioning  

Version 7.2 21 Automatic Provisioning via Cloud-Init 

5 Automatic Instance Provisioning 
Take into consideration that the cloud-init auto-configuration sequence occurs on the first 
SBC boot only. This is not a problem for a typical “automatic provisioning” scenario, where 
the instance configuration is auto-generated and configured via the #ini-file hashtag in user-
data and all network configuration and IP address assignment is completed as part of the 
instance creation, before the instance is started. 
However, if you create an instance manually – e.g. via Amazon EC2 GUI – you may decide 
to complete and/or modify the SBC networking configuration after the instance is already 
running. In such cases, consider using the“write factory” CLI command that deletes the 
current SBC configuration, reboots the instance and forces the cloud-init auto-configuration 
process to re-run on the following reboot. 

  



 

Configuration Note 22 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank. 

  



Configuration Note 6. Config-drive Emulation  

Version 7.2 23 Automatic Provisioning via Cloud-Init 

6 Config-drive Emulation 
Pure virtualization (non-cloud) environments – e.g. VMware or KVM – may use automatic 
provisioning as described in Chapter 5 by emulating the config-drive method of the automatic 
provisioning. 
Config-drive is essentially a virtual CD-ROM attached to the running the SBC instance that 
has a single FAT or ISO9660 filesystem with the label config-2 and the configuration data 
is located at openstack/latest/user_data. 
Therefore it can be easily created by executing the following commands on a Linux machine: 
mkdir -p /tmp/new-drive/openstack/latest 
cp user_data /tmp/new-drive/openstack/latest/user_data 
mkisofs -R -V config-2 -o configdrive.iso /tmp/new-driv 
rm -r /tmp/new-drive 

 
configdrive.iso is created as described above and should be attached to the SBC 
instance as a virtual CD-ROM device. 
Consider using #dhcp-address hashtag, as described in Section 2.52.5, to make the SBC 
use the network configuration acquired via the DHCP server. 

  



 

Configuration Note 24 Document #: LTRT-28662 

 Mediant VE/CE 

This page is intentionally left blank. 

  



Configuration Note 7. HEAT Orchestration Templates  

Version 7.2 25 Automatic Provisioning via Cloud-Init 

7 HEAT Orchestration Templates 
Automatic configuration may be specified in HEAT orchestration templates to automate 
provisioning complex services that include SBC instances. 
For example, the following HEAT templates may be used to create and automatically 
provision two SBC instances that operate in 1+1 HA mode. Note that to create such a 
configuration, maintenance IP addresses of each instance must be configured as 
HARemoteAddress in another instance and “allowed_address_pairs” configuration on the 
second network port must be modified to support IP failover. 

  



 

Configuration Note 26 Document #: LTRT-28662 

 Mediant VE/CE 

resources: 
  server_group: 
    type: OS::Nova::ServerGroup 
    properties: 
      name: sbc_pair 
      policies: 
        - anti-affinity 
 
  server1: 
    type: OS::Nova::Server 
    properties: 
      name: sbc1 
      image: { get_param: image } 
      flavor: { get_param: flavor } 
      key_name: { get_param: key_name } 
      networks: 
        - port: { get_resource: server1_port1 } 
        - port: { get_resource: server1_port2 } 
      scheduler_hints: { group: { get_resource: server_group } } 
      user_data: 
        str_replace: 
          template: | 
            #ini-file 
            HARemoteAddress = $ip 
            HAPriority = 10 
            HAUnitIdName = sbc1 
 
          params: 
            $ip: { get_attr: [server2_port2, fixed_ips, 0, 
ip_address] }       
 
  server1_port1: 
    type: OS::Neutron::Port 
    properties: 
      network: { get_param: public_net } 
      fixed_ips: 
        - subnet: { get_param: public_subnet } 
      security_groups: [{ get_resource: server_security_group }] 
 
  server1_port2: 
    type: OS::Neutron::Port 
    properties: 
      network: { get_resource: private_net } 
      fixed_ips: 
        - subnet: { get_resource: private_subnet } 
 
  server2: 
    type: OS::Nova::Server 
    properties: 
      name: sbc2 
      image: { get_param: image } 



Configuration Note 7. HEAT Orchestration Templates  

Version 7.2 27 Automatic Provisioning via Cloud-Init 

      flavor: { get_param: flavor } 
      key_name: { get_param: key_name } 
      networks: 
        - port: { get_resource: server2_port1 } 
        - port: { get_resource: server2_port2 } 
      scheduler_hints: { group: { get_resource: server_group } } 
      user_data: 
        str_replace: 
          template: | 
            #ini-file 
            HARemoteAddress = $ip 
            HAPriority = 5 
            HAUnitIdName = sbc2 
 
          params: 
            $ip: { get_attr: [server1_port2, fixed_ips, 0, 
ip_address] } 
    depends_on: server1 
 
  server2_port1: 
    type: OS::Neutron::Port 
    properties: 
      network: { get_param: public_net } 
      fixed_ips: 
        - subnet: { get_param: public_subnet } 
      security_groups: [{ get_resource: server_security_group }] 
      allowed_address_pairs:  
        - ip_address: { get_attr: [server1_port1, fixed_ips, 0, 
ip_address] } 
 
  server2_port2: 
    type: OS::Neutron::Port 
    properties: 
      network: { get_resource: private_net } 
      fixed_ips: 
        - subnet: { get_resource: private_subnet } 
 

 



 

  
 
 
 
 
 

International Headquarters 
1 Hayarden Street, 
Airport City  
Lod 7019900, Israel 
Tel: +972-3-976-4000 
Fax: +972-3-976-4040 
 
AudioCodes Inc.  
27 World’s Fair Drive,  
Somerset, NJ 08873 
Tel: +1-732-469-0880   
Fax: +1-732-469-2298 
 
 
 
Contact us: https://www.audiocodes.com/corporate/offices-worldwide       
Website: https://www.audiocodes.com/  
 
 
 
©2018 AudioCodes Ltd. All rights reserved. AudioCodes, AC, HD VoIP, HD VoIP Sounds Better, IPmedia, Mediant, 
MediaPack, What’s Inside Matters, OSN, SmartTAP, User Management Pack, VMAS, VoIPerfect, VoIPerfectHD, Your 
Gateway To VoIP, 3GX, VocaNom, AudioCodes One Voice and CloudBond are trademarks or registered trademarks of 
AudioCodes Limited. All other products or trademarks are property of their respective owners. Product specifications 
are subject to change without notice. 
 
 
 

Document #: LTRT-28662 
 

 
 
 
 
 

 

https://www.audiocodes.com/corporate/offices-worldwide
https://www.audiocodes.com/

	Table of Contents
	WEEE EU Directive
	Customer Support
	Abbreviations and Terminology
	Document Revision Record
	Documentation Feedback
	1 Introduction
	1.1 Supported Environments
	1.2 Boot Sequence

	2 “Automatic Configuration” Data
	2.1 #ini-file
	2.2 #ini-url
	2.3 #ini-s3
	2.4 #network-if
	2.5 #dhcp-address
	2.6 #no-dhcp-address
	2.7 #static-route
	2.8 #customer-id and #license-key
	2.9 #ini-default
	2.10 #ini-incremental
	2.11 #cloud-end
	2.12 #write-factory

	3 SSH Public Key
	4 Network Configuration in Amazon EC2 Environment
	5 Automatic Instance Provisioning
	6 Config-drive Emulation
	7 HEAT Orchestration Templates

