Avaya Solution & Interoperability Test Lab

Application Notes for Configuring Aura™ Session Manager and Avaya Aura™ Communication Manager Access Element with AudioCodes Mediant 3000 Gateway to access E1 PSTN - Issue 1.0

Abstract

These Application Notes describe the procedure to configure an Enterprise network built on Avaya Aura™ Session Manager and Avaya Aura™ Communication Manager Access Element to interoperate with AudioCodes Mediant 3000 gateway to access E1 PSTN using SIP trunking.

Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab.
Table of Contents

1. **Introduction** ... 4
 1.1. AudioCodes Mediant 3000... 4
 1.2. Interoperability Compliance Testing... 5
 1.3. Support.. 5
2. **Reference Configuration** .. 6
3. **Equipment and Software Validated** .. 7
4. **Configure Avaya Aura™ Communication Manager Access Element** 8
 4.1. Verify Avaya Aura™ Communication Manager License.. 9
 4.2. Configure IP Node Names ... 9
 4.3. Verify/List IP Interfaces ... 10
 4.4. Configure IP Codec Set .. 10
 4.5. Configure IP network Region .. 11
 4.6. Administer SIP Trunks with Avaya Aura™ Session Manager .. 12
 4.6.1. Add SIP Signaling Group for Calls within the Enterprise ... 12
 4.6.2. Configure a SIP Trunk Group for Calls within the Enterprise 13
 4.6.3. Add SIP Signaling Group for AudioCodes Mediant 3000 gateway 14
 4.6.4. Configure a SIP Trunk Group for AudioCodes Mediant 3000 Gateway 15
 4.7. Configure Route Patterns ... 16
 4.8. Configure Public Unknown Numbering ... 16
 4.9. Administer AAR Analysis ... 17
 4.10. Administer ARS Analysis ... 18
 4.11. Save Translations .. 18
5. **Configure Avaya Aura™ Session Manager** ... 19
 5.1. Specify SIP Domain .. 20
 5.2. Add Locations .. 21
 5.3. Add Adaptations .. 22
 5.4. Add SIP Entities .. 23
 5.4.1. Adding Avaya Aura™ Communication Manager Access Element SIP Entity 23
 5.4.2. Adding AudioCodes Mediant 3000 Gateway SIP Entity .. 24
 5.4.3. Adding Avaya Aura™ Session Manager SIP Entity ... 25
 5.5. Add Entity Links ... 26
 5.6. Add Routing Policies ... 28
 5.7. Add Dial Patterns ... 30
 5.8. Add Avaya Aura™ Session Manager ... 32
6. **AudioCodes Mediant 3000 Configuration** ... 33
 6.1. Configure the Media Gateway Host IP Network Parameters ... 33
 6.1.1. Saving settings .. 34
 6.2. Configure the Media Gateway TDM and Timing Parameters ... 35
 6.2.1. Configure TDM Bus ... 35
 6.2.2. Configure Digital PCM Settings ... 35
 6.2.3. Configure System Timing ... 36
 6.3. Configure the Media Gateway Media Settings ... 37
6.3.1. Configure the Voice Parameters .. 37
6.3.2. Configure the Fax Parameters .. 38
6.3.3. Configure the RTP/RTCP Parameters 39
6.4. Configure the Media Gateway Telephony/PSTN Interface Parameters 40
6.5. Configure the Media Gateway SIP Protocol Parameters 42
 6.5.1. Configure the Trunk Group Table .. 42
 6.5.2. Configure the general SIP protocol parameters 43
 6.5.3. Configure the DTMF and Dialing Parameters 44
 6.5.4. Configure the Proxy & Registration Parameters 45
 6.5.5. Configure the Device's Coders ... 46
 6.5.6. Configure the IP Profile Settings 47
 6.5.7. Configure the Advanced General Protocol Parameters 49
 6.5.8. Configure the Supplementary Services' Parameters 50
 6.5.9. Configure the Number Manipulation Tables 51
 6.5.10. Configure Inbound IP Routing Rules 51
 6.5.11. Configure Outbound IP Routing Rules 52
 6.5.12. Configure Release Cause Mapping 54
6.6. Configure the Syslog Parameters for Debug Assistance 55
7. Verification Steps .. 56
 7.1. Verify Avaya Aura™ Communication Manager Access Element Trunk Status 56
 7.2. SIP Monitoring on Avaya Aura™ Session Manager 57
 7.3. Utilizing the Web Interface to observe Status 57
 7.3.1. Device Status ... 57
 7.3.2. Device Information .. 58
 7.3.3. Trunks and Channels Status .. 58
 7.3.4. Gateway Home Page ... 59
8. General Test Approach ... 60
 8.1. Test Results and Remarks ... 60
9. Conclusion ... 60
10. Additional References .. 61
1. Introduction

These Application Notes present a sample configuration for an Enterprise network consisting of Avaya Aura™ Session Manager and Avaya Aura™ Communication Manager Access Element as SIP infrastructure to access the PSTN with AudioCodes Mediant 3000 Gateway using SIP. The AudioCodes Mediant 3000 is a carrier-grade VoIP gateway that supports both media and signaling in a single chassis. It provides any-to-any voice network connectivity and can deliver SIP services into legacy PRI, CAS, and SS7 networks, as well as IP-to-IP transcoding and multimedia border element functions, such as SIP mediation for network edge applications. Its compact 2U high-density design features integrated SS7 termination across multiple gateways, GUI-based management, and software licensing for in-service capacity expansion.

1.1. AudioCodes Mediant 3000

The AudioCodes Mediant 3000 is a feature-rich, highly available VoIP gateway supporting low to medium channel densities. The AudioCodes Mediant 3000 compact footprint (2U) allows high capacity and High Availability when business critical contact centers require such resilience. The AudioCodes Mediant 3000 has comprehensive PSTN access capabilities as well as SIP to SIP interworking features that enable the interconnection between enterprises and service providers. In addition to E1/T1 interfaces, the AudioCodes Mediant 3000 supports high-density PSTN interfaces, such as T3, STM-1 and OC3 to provide the enterprise with lower PSTN lease costs. The proven interoperability of the AudioCodes Mediant 3000 with different PBXs and PSTN switches facilitates smooth deployment.

![Figure 1: Front and Rear Panel Slot Assignment for AudioCodes Mediant 3000 Simplex with 8410 Blades](image)

Legend:
1. Slot 1 front panel: 8410 blade (active blade for AudioCodes Mediant 3000 HA only).
2. Slot 2 front panel: SA/M3K blade (active blade for AudioCodes Mediant 3000 HA only).
3. Slot 3 front panel: Standby (redundant) 8410 blade (applicable only to AudioCodes Mediant 3000 HA). In Simplex mode, this slot is covered with a blank panel.
4. Slot 4 front panel: Standby (redundant) Alarm and Status blade (applicable only to AudioCodes Mediant 3000 HA). In Simplex mode, this slot is covered with a blank panel.

5. Blank panels covering unoccupied slots.

6. Slot 2 rear panel: RTM-8410 providing PSTN E1/T1 (Trunks 1 to 42, or 1 to 16) and dual Gigabit Ethernet interfaces.

7. Slot 4 rear panel: RTM-8410 providing PSTN E1/T1 (Trunks 43 to 84) interfaces and Gigabit Ethernet interfaces.

1.2. Interoperability Compliance Testing

The primary focus of testing is to verify SIP trunking interoperability between an Avaya Aura™ SIP-based network and AudioCodes Mediant 3000 Gateway using SIP. Test cases are selected to exercise a sufficiently broad segment of functionality to have a reasonable expectation of interoperability in production configurations.

Basic Interoperability:
- PSTN calls delivered via the AudioCodes Mediant 3000 to an Enterprise endpoint
- PSTN calls sent via the AudioCodes Mediant 3000 from an Enterprise endpoint
- Calling with various Avaya telephone models including IP/SIP models as well as traditional analog and digital TDM phones
- Verify ITU-T codecs: G.711A G.711MU G.729A G.729B support
- Various PTSN dialing plans including national and international calling, toll-free, operator, directory assistance and direct inward dialed calling
- SIP transport using UDP

Advanced Interoperability:
- Codec negotiation
- Telephony supplementary features, such as Hold, Call Transfer, Conference Calling and Call Forwarding
- DTMF Tone Support
- T.38 Fax support
- Voicemail Coverage and Retrieval
- Direct IP-to-IP Media (also known as “Shuffling”) over SIP Trunk. Direct IP-to-IP media allows compatible phones to reconfigure the RTP path after call establishment directly between the Avaya phones and the AudioCodes Mediant 3000 Gateway and release media processing resources on the Avaya Media Gateway
- EC500 for Avaya Aura™ Communication Manager

1.3. Support

Technical Support on AudioCodes Mediant 3000 Gateway can be obtained through email notification to support@audiocodes.com
2. Reference Configuration

As shown in Figure 1, the Avaya enterprise network uses SIP trunking for call signaling internally and with the Mediant 3000 Gateway in order to access the PSTN. The Mediant 3000 is managed by using the web interface, other administration capabilities are available, refer to [15-18] for additional information. Session Manager, with its SM-100 (Security Module) network interface, routes the calls between the different entities using SIP Trunks. All inter-system calls are carried over these SIP trunks. Session Manager supports flexible inter-system call routing based on the dialed number, the calling number and the system location; it can also provide protocol adaptation to allow multi-vendor systems to interoperate. Session Manager is managed by System Manager via the management network interface.

![Diagram](image_url)

Figure 2: Sample configuration for Avaya Aura™ Communication Manager and Avaya Aura™ Session Manager with AudioCodes Mediant 3000 using SIP Trunking

For the sample configuration shown in Figure 1, Session Manager runs on an Avaya S8510 Server, Communication Manager Access Element runs on an Avaya S8730 Server with an Avaya G650 Media Gateway. For the Communication Manager Access Element, the results in these Application Notes are applicable to other Communication Manager Server and Media Gateway combinations. These Application Notes will focus on the configuration of the SIP trunks and call routing. Detailed administration of the endpoint telephones will not be described. Refer to the appropriate documentation in Section 10.
3. Equipment and Software Validated

The following equipment and software were used for the sample configuration provided:

<table>
<thead>
<tr>
<th>Avaya Product / Hardware Platform</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avaya Aura™ Session Manager on Avaya S8510 Server</td>
<td>Avaya Aura™ Session Manager 5.2 5.2.1.1.521012 – 5.2.1 SP1</td>
</tr>
<tr>
<td>Avaya Aura™ System Manager Template running on Avaya System Platform S8510 Server</td>
<td>Avaya Aura™ System Manager 5.2 5.2.1.0.521001 - 05_02_GA_01_Dec10</td>
</tr>
<tr>
<td>Avaya Aura™ System Platform on Avaya S8510 Server</td>
<td>Avaya Aura™ System Platform Version 1.1.1.0.2</td>
</tr>
<tr>
<td>Avaya Aura™ Communication Manager - Access Element – Avaya Media Server S8730</td>
<td>Avaya Aura™ Communication Manager R015x.02.1.016.4 – patch 18250 (SP3)</td>
</tr>
<tr>
<td>Avaya Telephones: 9620 (H323) 1616 (H323) 4621 (H323) Avaya Digital Telephones (2420) Avaya Analog (2500)</td>
<td>Avaya one-X™ Deskphone R3.1 Release 1.3 Release R2.9 SP1 N/A N/A</td>
</tr>
<tr>
<td>Avaya One-X Communicator (H323)</td>
<td>Release 5.2.0.14</td>
</tr>
<tr>
<td>Fax Machine - Canon FAX JX500</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AudioCodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product /Hardware Platform</td>
</tr>
<tr>
<td>AudioCodes Mediant 3000 chassis equipped with: SA/M3K - Alarm, Status and Synchronization blade TP8410 blades – Trunk Pack RTM-8410, Rear module, proving the I/O connections to the supported interfaces (Gigabit Ethernet and DS1 PSTN).</td>
</tr>
</tbody>
</table>
4. Configure Avaya Aura™ Communication Manager Access Element

This section provides the procedures for configuring Communication Manager as an Access Element. The procedures include the following areas:

- Verify Avaya Aura™ Communication Manager License
- Configure IP Node Names
- Verify/List IP Interfaces
- Configure IP Codec Set
- Configure IP Network Region
- Administer SIP Trunks with Avaya Aura™ Session Manager
- Configure Route Pattern
- Configure Public Unknown Numbering
- Administer AAR Analysis
- Administer ARS Analysis
- Save Translations

Throughout this section the administration of Communication Manager is performed using a System Access Terminal (SAT), the following commands are entered on the system with the appropriate administrative permissions. Some administration screens have been abbreviated for clarity. These instructions assume that the Communication Manager has been installed, configured, licensed and provisioned with a functional dial plan. Refer to the appropriate documentation as described in Reference [8] and [9] for more details. In these Application Notes, Communication Manager was configured with 4 digit extensions 30xx for stations The SIP endpoints 35xx, administrated by Session Manager, are reachable with aar. Diaplan analysis can be verified with the display dialplan analysis command.

<table>
<thead>
<tr>
<th>display dialplan analysis</th>
<th>DIAL PLAN ANALYSIS TABLE</th>
<th>Page 1 of 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: all</td>
<td>Percent Full: 1</td>
<td></td>
</tr>
<tr>
<td>Dialed String</td>
<td>Total Call Type</td>
<td>Dialed String</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>ext</td>
</tr>
</tbody>
</table>

Other numbers on the PSTN (accessible from the Mediant 3000 Gateway) are reachable via the ars table with the use of feature access code 9.
4.1. Verify Avaya Aura™ Communication Manager License

Use the `display system-parameters customer-options` command. Navigate to Page 2 and verify that there is sufficient remaining capacity for SIP trunks by comparing the Maximum Administered SIP Trunks field value with the corresponding value in the USED column. The difference between the two values needs to be greater than or equal to the desired number of simultaneous SIP trunk connections. Verify highlighted value, as shown below.

```
<table>
<thead>
<tr>
<th>IP PORT CAPACITIES</th>
<th>USED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Administered H.323 Trunks:</td>
<td>100</td>
</tr>
<tr>
<td>Maximum Concurrently Registered IP</td>
<td>18000</td>
</tr>
<tr>
<td>Stations:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Administered Remote Office</td>
<td>0</td>
</tr>
<tr>
<td>Trunks:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Concurrently Registered Remote</td>
<td>0</td>
</tr>
<tr>
<td>Office Trunks:</td>
<td>0</td>
</tr>
<tr>
<td>Max Concur Registered Unauthenticated</td>
<td>0</td>
</tr>
<tr>
<td>H.323 Stations:</td>
<td>100</td>
</tr>
<tr>
<td>Maximum Video Capable Stations:</td>
<td>100</td>
</tr>
<tr>
<td>Maximum Video Capable IP Softphones:</td>
<td>100</td>
</tr>
<tr>
<td>Maximum Administered SIP Trunks:</td>
<td>1000</td>
</tr>
</tbody>
</table>
```

If there is insufficient capacity of SIP Trunks or a required feature is not enabled, contact an authorized Avaya Sales representative to make the appropriate changes.

4.2. Configure IP Node Names

As SIP interaction with Session Manager is carried through the security module SM100 interface, in configuring the SIP Trunk on Communication Manager it is necessary to refer to the SM100 IP address using a node-name. Use the `change node-names ip` command to add the Name and IP Address for the Session Manager. In the example, SM100 and 193.120.221.154 were used.

```
<table>
<thead>
<tr>
<th>Name</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway001</td>
<td>193.120.221.129</td>
</tr>
<tr>
<td>SM100</td>
<td>193.120.221.154</td>
</tr>
<tr>
<td>clan</td>
<td>193.120.221.132</td>
</tr>
<tr>
<td>default</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>mpro</td>
<td>193.120.221.133</td>
</tr>
<tr>
<td>procr</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>
```

Note: In the example, some other values (CLAN, MedPro) have been already created as per installation and configuration of Communication Manager.
4.3. Verify/List IP Interfaces

Use the `list ip-interface all` command and note the C-LAN to be used for SIP trunks between Communication Manager and Session Manager.

```
list ip-interface all

ON      Type   Slot      Code/Sfx      Node Name/   Mask       Gateway Node      Net Rgn VLAN
------  -------  --------  ------------  ----------  ------------  ------  ----
|-----  ------  --------  ------------  ----------  ------------  ------  ----|
| y    C-LAN  01A02 TN799 D clan    193.120.221.132 /25 Gateway001  1 n |
| y    MEDPRO 01A03 TN2602 mpro 193.120.221.133  |
```

4.4. Configure IP Codec Set

Use the `change ip-codec-set n` command where n is the codec set used in the configuration. A list of supported interoperability compliance tests is presented in Section 1.1. The ITU G.711A-law is described here. Configure the IP Codec Set as follows:

- **Audio Codec** Set G.711A

Retain the default values for the remaining fields.

```
change ip-codec-set 1

Codec Set: 1

Audio Codec

<table>
<thead>
<tr>
<th>Silence</th>
<th>Frames</th>
<th>Packet Size(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

1: G.711A
2: 
3: 

To configure fax support, navigate to Page 2 and change FAX to t.38-standard. Use default values for all other fields. Submit these changes.

```
change ip-codec-set 1

IP Codec Set

Allow Direct-IP Multimedia? n

<table>
<thead>
<tr>
<th>Mode</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAX</td>
<td>t.38-standard 0</td>
</tr>
<tr>
<td>Modem</td>
<td>off 0</td>
</tr>
<tr>
<td>TDD/TTY</td>
<td>US 3</td>
</tr>
<tr>
<td>Clear-channel</td>
<td>n 0</td>
</tr>
</tbody>
</table>
```


4.5. Configure IP network Region

Use the `change ip-network-region n` command where `n` is the number of the network region used. Set the **Intra-region IP-IP Direct Audio** and **Inter-region IP-IP Direct Audio** fields to **yes**. For the **Codec Set**, enter the corresponding audio codec set configured in **Section 4.4**. Set the **Authoritative Domain** to the SIP domain. Retain the default values for the remaining fields, and submit these changes.

**Note:** In the test configuration, **network region 1** was used. If a new network region is needed or an existing one is modified, ensure to configure it with the correct parameters.

```
change ip-network-region 1

IP NETWORK REGION
Region: 1
Location: 1
Authoritative Domain: avaya.com
Name: Enterprise

MEDIA PARAMETERS
Codec Set: 1
Intra-region IP-IP Direct Audio: yes
Inter-region IP-IP Direct Audio: yes
UDP Port Min: 2048
UDP Port Max: 3329
IP Audio Hairpinning? n
```
4.6. Administer SIP Trunks with Avaya Aura™ Session Manager

Two SIP trunks are needed for the configuration presented in these Application Notes: one for calls within the Enterprise and another one for calls with AudioCodes Mediant 3000. To administer a SIP Trunk on Communication Manger, two intermediate steps are required: the creation of a signaling group and a trunk group.

4.6.1. Add SIP Signaling Group for Calls within the Enterprise

Use the `add signaling-group n` command, where `n` is an available signaling group number, for one of the SIP trunks to the Session Manager, and fill in the indicated fields. Default values can be used for the remaining fields:

- **Group Type**: sip
- **Transport Method**: tls
- **Near-end Node Name**: C-LAN node name from Section 4.2 (i.e., clan).
- **Far-end Node Name**: Session Manager node name from Section 4.2 (i.e. SM100).
- **Near-end Listen Port**: 5061
- **Far-end Listen Port**: 5061
- **Far-end Domain**: avaya.com
- **DTMF over IP**: rtp-payload
- **Direct IP-IP Audio Connection**: y

Submit these changes.

```
add signaling-group 3
SIGNALING GROUP

Group Number: 3 Group Type: sip
Transport Method: tls
IMS Enabled? n
IP Video? n
Near-end Node Name: clan Far-end Node Name: SM100
Near-end Listen Port: 5061 Far-end Listen Port: 5061
 Far-end Network Region: 1
Far-end Domain: avaya.com

Incoming Dialog Loopbacks: eliminate Bypass If IP Threshold Exceeded? n
RFC 3389 Comfort Noise? n
DTMF over IP: rtp-payload Direct IP-IP Audio Connections? y
Session Establishment Timer(min): 3 IP Audio Hairpinning? n
Enable Layer 3 Test? n Direct IP-IP Early Media? n
H.323 Station Outgoing Direct Media? n Alternate Route Timer(sec): 6
```

Submit these changes.
4.6.2. Configure a SIP Trunk Group for Calls within the Enterprise

Add the corresponding trunk group controlled by this signaling group via the `add trunk-group n` command, where `n` is an available trunk group number and fill in the indicated fields.

- **Group Type:** `sip`
- **Group Name:** A descriptive name (i.e. To AuraSM)
- **TAC:** An available trunk access code (i.e. 803)
- **Service Type:** `tie`
- **Signaling Group:** The number of the signaling for outbound calls (i.e. 3)
- **Number of Members:** The number of SIP trunks to be allocated to calls routed to `Session Manager` (must be within the limits of the total trunks available from licensed verified in Section 4.1)

```
add trunk-group 3
```

```
Group Number: 3
Group Type: sip
Group Name: To AuraSM
Direction: two-way
Dial Access? n
Queue Length: 0
Service Type: tie
```

```
TRUNK FEATURES
```

```
ACA Assignment? n
```

```
Numbering Format: public
```

Navigate to Page 3 and change **Numbering Format** to `public`. Use default values for all other fields.

```
add trunk-group 3
```

```
Number of Members: 30
```

```
TRUNK FEATURES
```

```
Numbering Format: public
```

```
UUI Treatment: service-provider
```

```
Maintenance Tests? y
```

```
```

```
Replace Restricted Numbers? n
```

```
Replace Unavailable Numbers? n
```

```
```

```
```
4.6.3. Add SIP Signaling Group for AudioCodes Mediant 3000 gateway

To accept inbound calls from the Mediant 3000 Gateway, it is necessary to configure a SIP signaling group. Use the `add signaling-group n` command, where `n` is an available signaling group number, for one of the SIP trunks to the Session Manager, and fill in the indicated fields. Default values can be used for the remaining fields:

- **Group Type**: sip
- **Transport Method**: tls
- **Near-end Node Name**: C-LAN node name from Section 4.2 (i.e. clan)
- **Far-end Node Name**: Session Manager node name from Section 4.2 (i.e. SM100)
- **Near-end Listen Port**: 5061
- **Far-end Listen Port**: 5061
- **Far-end Domain**: Leave it blank
- **DTMF over IP**: rtp-payload
- **Direct IP-IP Audio Connection**: y

```
add signaling-group 2

SIGNALING GROUP
Group Number: 2
 Group Type: sip
 Transport Method: tls
 IMS Enabled? n
 IP Video? n

 Near-end Node Name: clan
 Near-end Listen Port: 5061

 Far-end Node Name: SM100
 Far-end Listen Port: 5061
 Far-end Network Region: 1

 Bypass If IP Threshold Exceeded? n
 RFC 3389 Comfort Noise? n
 Direct IP-IP Audio Connections? y
 Direct IP-IP Early Media? n
 Alternate Route Timer(sec): 15
```
4.6.4. **Configure a SIP Trunk Group for AudioCodes Mediant 3000 Gateway**

Add the corresponding trunk group controlled by this signaling group via the `add trunk-group n` command, where `n` is an available trunk group number and fill in the indicated fields.

- **Group Type:** `sip`
- **Group Name:** A descriptive name (i.e. GWInbound)
- **TAC:** An available trunk access code (i.e. 804)
- **Service Type:** `tie`
- **Signaling Group:** Number of the signaling group added in Section 4.6.3 (i.e. 4)
- **Number of Members:** The number of SIP trunks to be allocated to calls routed to Session Manager (must be within the limits of the total trunks available from licensed verified in Section 4.1)

**Note:** The number of members determines how many simultaneous calls can be processed by the trunk through Session Manager.

```
add trunk-group 4

TRUNK GROUP

Group Number: 4 Group Type: sip CDR Reports: y
Group Name: GWInbound COR: 1 TN: 1 TAC: 804
Direction: two-way Outgoing Display? n
Dial Access? n
Queue Length: 0
Service Type: tie Auth Code? n

Signaling Group: 4
Number of Members: 10
```

Navigate to Page 3 and change **Numbering Format** to public. Use default values for all other fields. Submit these changes.

```
add trunk-group 4

TRUNK FEATURES

ACA Assignment? n Measured: none
Maintenance Tests? y

Numbering Format: public
UUI Treatment: service-provider
Replace Restricted Numbers? n
Replace Unavailable Numbers? n
```
4.7. Configure Route Patterns

Configure two route patterns to correspond to the newly added SIP trunk groups. Use `change route pattern n` command, where `n` is an available route pattern. When changing the route pattern, enter the following values for the specified fields, and retain the default values for the remaining fields. Submit these changes.

- **Pattern Name:** A descriptive name (i.e., `toSessionManager`)
- **Grp No:** The trunk group number from **Section 4.6.2**
- **FRL:** Enter a level that allows access to this trunk, with **0** being least restrictive

```
change route-pattern 3

Pattern Number: 3 Pattern Name: toSessionManager

Grp FRL NPA Pfx Hop Toll No. Inserted DCS/ IXC
No Mrk Lmt List Del Digits QSIG

1: 3 0 n user
2: n user

BCC VALUE TSC CA-TSC ITC BCIE Service/Feature PARM No. Numbering
LAR
0 1 2 M 4 W Request Dgts Format

Subaddress

1: y y y y y n n unre none
2: y y y y y n n rest none
```

4.8. Configure Public Unknown Numbering

Use the `change public-unknown-numbering 0` command to assign number presented by Communication Manager for calls leaving Session Manager. Add an entry for the Extensions configured in the dialplan. Enter the following values for the specified fields, and retain default values for the remaining fields. Submit these changes.

- **Ext Len:** Number of digits of the Extension i.e. **4**
- **Ext. Code:** Digits beginning the Extension number i.e. **30**
- **Trk Group:** Leave it blank (meaning any trunk)
- **CPN Prefix:** Leave it blank
- **Total CPN Len** Number of digits i.e. **4**

```
change public-unknown-numbering 0

NUMBERING - PUBLIC/UNKNOWN FORMAT

Ext Ext Trk CPN Total
Len Code Grp(s) Prefix CPN Len

Total Administered: 1

4 30

4 Maximum Entries: 9999
```
4.9. Administer AAR Analysis

This section provides sample Automatic Alternate Routing (AAR) used for routing calls with dialed digits 35xx corresponding to SIP endpoint registered on Session Manager (not shown in these Application Notes). Use the change aar analysis 0 command and add an entry to specify how to route calls to 35xx. Enter the following values for the specified fields and retain the default values for the remaining fields. Submit these changes.

- **Dialed String:** Dialed prefix digits to match on, in this case 35
- **Total Min:** Minimum number of digits, in this case 4
- **Total Max:** Maximum number of digits, in this case 4
- **Route Pattern:** The route pattern number from Section 4.7 i.e. 3
- **Call Type:** aar

### AAR DIGIT ANALYSIS TABLE

<table>
<thead>
<tr>
<th>Dialed String</th>
<th>Total Min</th>
<th>Total Max</th>
<th>Route Pattern</th>
<th>Call Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>aar</td>
</tr>
</tbody>
</table>

Page 1 of 2
4.10. Administer ARS Analysis

This section provides sample Auto Route Selection (ARS) used for routing calls with dialed digits beginning with 0 corresponding to national numbers accessible via the Mediant 3000. Use the change ars analysis 0 command and add an entry to specify how to route calls. Enter the following values for the specified fields and retain the default values for the remaining fields. Submit these changes.

- **Dialed String:** Dialed prefix digits to match on, in this case 0
- **Total Min:** Minimum number of digits, in this case 3
- **Total Max:** Maximum number of digits, in this case 25
- **Route Pattern:** The route pattern number from Section 4.7 i.e. 3
- **Call Type:** pubu

**Note:** The additional entries may be added for different number destinations.

```
change ars analysis 0

ARS DIGIT ANALYSIS TABLE
Location: all
Percent Full: 1

<table>
<thead>
<tr>
<th>Dialed String</th>
<th>Total Min</th>
<th>Total Max</th>
<th>Route Pattern</th>
<th>Call Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>25</td>
<td>3</td>
<td>pubu</td>
</tr>
</tbody>
</table>
```

4.11. Save Translations

Configuration of Communication Manager is complete. Use the **save translations** command to save these changes.

```
save translation

SAVE TRANSLATION

Command Completion Status Error Code
Success 0
```
5. Configure Avaya Aura™ Session Manager

This section provides the procedures for configuring Session Manager, assuming it has been installed and licensed as described in Reference [3]. The procedures include adding the following items:

- Specify SIP Domain
- Add Locations
- Add Adaptations
- Add SIP Entities
- Add Entity Links
- Add Routing Policies
- Add Dial Patterns
- Add Session Manager

Configuration is accomplished by accessing the browser-based GUI of System Manager, using the URL http://<ip-address>/SMGR, where <ip-address> is the IP address of System Manager. Log in with the appropriate credentials and accept the Copyright Notice. The menu shown below is displayed. Expand the Network Routing Policy Link on the left side as shown.
5.1. Specify SIP Domain

Add the SIP domain for which the communications infrastructure will be authoritative. Do this by selecting **SIP Domains** on the left and clicking the **New** button on the right. The following screen will then be shown. Fill in the following fields and click **Commit**.

- **Name**: The authoritative domain name (e.g. avaya.com)
- **Type**: Select sip
- **Notes**: Descriptive text (optional)
5.2. Add Locations

Locations can be used to identify logical and/or physical locations where SIP Entities reside, for purposes of bandwidth management. A single location is added to the configuration for Communication Manager Access Element and Mediant 3000 Gateway. To add a location, select Locations on the left and click on the New button on the right. The following screen will then be shown. Fill in the following:

Under General
- **Name:** A descriptive name
- **Notes:** Descriptive text (optional)
- **Managed Bandwidth:** Leave the default or customize as described in [5]

Under Location Pattern
- **IP Address Pattern**
  - **IP Address Pattern**
    - A pattern used to logically identify the location. In these Application Notes, the pattern selected defined the networks involved e.g. 193.120.221.* for referring the Enterprise network and 195.189.192.* for IP network where the Mediant 3000 Gateway resides.
- **Notes**
  - Descriptive text (optional)

The screen below shows addition of the Enterprise location, which includes all the components of the compliance environment. Click **Commit** to save.

![Location Details Screen](image)
5.3. Add Adaptations

In order to maintain digit manipulation centrally on Session Manager, an adaptation module can be configured with a numbering plan offered from the PSTN Service Provider. Alternatively the numbering plan translation can be implemented in the Mediant 3000 Gateway. Note that the Digit Conversion for Outgoing Calls from SM will modify the P-AI field in the SIP invite, requiring the Mediant 3000 privacy setting to be configured as described in Section 6.5.2. To add an adaptation, under the Network Routing Policy select Adaptations on the left and click on the New button on the right. The following screen will then be shown. Fill in the following:

Under General
  - Adaptation name: A descriptive name i.e: DigitConversionAdapter
  - Module name: From the dropdown list select DigitConversionAdapter
  - Module Parameter: Leave it blank

Under Digit Conversion for Incoming Calls to SM
  - Matching Pattern: The dialed number from the PSTN
  - Min/Max: Minimum/Maximum number of digits
  - Delete Digits: Digits to be deleted
  - Insert Digits: Digit to be added
  - Address to modify: Select destination

Under Digit Conversion for Outgoing Calls from SM
  - Matching Pattern: The dialed number from enterprise network
  - Min/Max: Minimum/Maximum number of digits
  - Delete Digits: Digits to be deleted
  - Insert Digits: Digit to be added
  - Address to modify: Select origination

The screen below is the Adaptation detail page. Click Commit to save the changes.
5.4. Add SIP Entities

A SIP Entity must be added for Session Manager and for each SIP-based telephony system supported by it using SIP trunks. In the sample configuration, a SIP Entity is added for the Session Manager, the C-LAN board in the Avaya G650 Media Gateway for the Communication Manager Access Element and the Mediant 3000 Gateway ip interface.

5.4.1. Adding Avaya Aura™ Communication Manager Access Element SIP Entity

To add a SIP Entity, navigate Network Routing Policy → SIP Entities on the left and click on the New button on the right.

Under General
- **Name:** A descriptive name (i.e. CM-AE)
- **FQDN or IP Address:** IP address of the signaling interface of CLAN board in the G650 Media gateway, i.e. 193.120.221.132
- **Type:** Select CM
- **Location:** Select one of the locations defined previously i.e. Enterprise
- **Time Zone:** Time zone for this entity

Defaults can be used for the remaining fields. Click **Commit** to save SIP Entity definition. The following screen shows addition of Communication Manager Access Element.
5.4.2. Adding AudioCodes Mediant 3000 Gateway SIP Entity

Navigate Network Routing Policy → SIP Entities on the left and click on the New button on the right.

Under General
- Name: A descriptive name (i.e. Gateway)
- FQDN or IP Address: IP address of the signaling interface of Mediant 3000 Gateway, i.e. 208.209.43.59
- Type: Select Gateway
- Adaptation: Select the adaptation created in Section 5.3 i.e. DigitConversionAdapter
- Location: Select one of the locations defined previously i.e. Enterprise
- Time Zone: Time zone for this entity

Under SIP Link Monitoring, configure SIP Link Monitoring as Use Session Manager Configuration if Mediant 3000 is in simplex configuration or Link Monitoring Disabled for Mediant 3000 Gateway in HA configuration. Defaults can be used for the remaining fields. Click Commit to save SIP Entity definition. The screen below shows the configuration of the SIP Entity related to Mediant 3000.

![SIP Entity Configuration Screen](image-url)
5.4.3. Adding Avaya Aura™ Session Manager SIP Entity

Navigate Network Routing Policy → SIP Entities on the left and click on the New button on the right.

Under General

- **Name:** A descriptive name, i.e. *SessionManager*
- **FQDN or IP Address:** IP address of the Session Manager, i.e. 193.120.221.154, the SM-100 Security Module
- **Type:** Select Session Manager
- **Location:** Select one of the locations defined previously
- **Outbound Proxy:** Select the SIP Entity defined previously for Mediant 3000, i.e. Gateway
- **Time Zone:** Time zone for this entity

Create two Port definitions, one for TLS and one for UDP. Under Port, click Add, and then edit the fields in the resulting new row as shown below:

- **Port** Port number on which the system listens for SIP requests
- **Protocol** Transport protocol to be used to send SIP requests
- **Default Domain** The domain used (e.g., avaya.com)

Defaults can be used for the remaining fields. Click Commit to save each SIP Entity definition. The following screen shows the addition of Session Manager.
5.5. Add Entity Links

A SIP trunk between Session Manager and a telephony system is described by an Entity link. To add an Entity Link, select Entity Links on the left and click on the New button on the right. Fill in the following fields in the new row that is displayed:

- **Name:** A descriptive name
- **SIP Entity 1:** Select the SessionManager entity
- **Protocol:** Select the transport protocol between UDP/TCP/TLS to align with the definition on the other end of the link. In these Application Notes TLS was used for Communication Manager Access Element while UDP or TCP can be used for Mediant 3000
- **Port:** Port number to which the other system sends SIP requests
- **SIP Entity 2:** Select the name of the other system
- **Port:** Port number on which the other system receives SIP requests
- **Trusted:** Check this box, otherwise calls from the associated SIP Entity specified will be denied

Click **Commit** to save each Entity Link definition. The following screen illustrates adding the Entity Link for Communication Manager Access Element.

The screen below illustrates adding the Entity Link AudioCodes for Mediant 3000 SIP Entity.
The screen below summarizes the Entity Links view after the insertion of the three Entity Links.
5.6. Add Routing Policies

Routing policies describe the condition under which calls will be routed to the SIP Entities specified in Section 5.4. Two routing policies must be added: one for Communication Manager Access Element and one for the Mediant 3000 Gateway. To add a routing policy, select Routing Policies on the left and click on the New button on the right. The following screen is displayed.

Fill in the following:

Under General
- Enter a descriptive name in Name

Under SIP Entity as Destination
- Click Select and then select the appropriate SIP entity to which this routing policy applies

Under Time of Day
- Click Add and select the time range configured. In these Application Notes, the predefined 24/7 time range is used

Defaults can be used for the remaining fields. Click Commit to save each Routing Policy definition. The following picture shows the Routing Policy for Communication Manager Access Element.
The following screen shows the Routing Policy for Mediant 3000.
5.7. Add Dial Patterns

Dial patterns must be defined that will direct calls to the appropriate SIP Entity. In the sample configuration, 4-digit extensions beginning with 30 reside on Communication Manager Access Element, and numbers beginning with 0 with 3 to 25 digits reside on the Mediant 3000. To add a dial pattern, select **Dial Patterns** on the left and click on the **New** button on the right. Fill in the following, as shown in the screen below, which corresponds to the dial pattern for routing calls to Communication Manager Access Element:

**Under General**
- **Pattern:** Dialed number or prefix i.e. 30
- **Min:** Minimum length of dialed number i.e. 4
- **Max:** Maximum length of dialed number i.e. 4
- **SIP Domain:** Select ALL

**Under Originating Locations and Routing Policies,** click **Add,** and then select the appropriate location and routing policy from the list. Default values can be used for the remaining fields. Click **Commit** to save this dial pattern. The following screen shows a sample dial pattern definition for Communication Manager Access Element.
Repeat the process adding one or more dial patterns for the PSTN numbers that should be reached from the Mediant 3000. Fill in the following, as shown in the screen below, which corresponds to the dial pattern for routing calls to Mediant 3000:

Under **General**
- **Pattern**: Dialed number or prefix i.e. **0**
- **Min**: Minimum length of dialed number i.e. **3**
- **Max**: Maximum length of dialed number i.e. **24**
- **SIP Domain**: Select **ALL**

Under **Originating Locations and Routing Policies**, click **Add**, and then select the appropriate location and routing policy from the list. Default values can be used for the remaining fields. Click **Commit** to save this dial pattern. The following screen shows a sample the dial pattern definition for PSTN reachable with Mediant 3000.
5.8. Add Avaya Aura™ Session Manager

To complete the configuration, adding the Session Manager will provide the linkage between System Manager and Session Manager. Expand the Session Manager menu on the left and select Session Manager Administration. Then click Add, and fill in the fields as described below and shown in the following screen:

Under General
- **SIP Entity Name** Select the name of the SIP Entity added for Session Manager
- **Description** Descriptive comment (optional)
- **Management Access Point Host Name/IP** Enter the IP address of the Session Manager management interface

Under Security Module
- **Network Mask** Enter the network mask corresponding to the IP address of the SM100 interface (i.e., 255.255.255.128)
- **Default Gateway** Enter the IP address of the default gateway for SM100 interface (i.e., 193.120.221.129)

Use default values for the remaining fields. Click **Commit** to add this configuration to Session Manager.
6. AudioCodes Mediant 3000 Configuration

This section displays the configuration for enabling the Mediant 3000 to interoperate with Session Manager. The procedures require five distinct operations:

- Configuring the Media Gateway Host IP Network Parameters
- Configuring the Media Gateway TDM and Timing Parameters
- Configuring the Media Gateway Media Settings
- Configuring the Media Gateway Telephony/PSTN interfaces Parameters
- Configuring the Media Gateway SIP Protocol Parameters

The Mediant 3000 can be administered using the Native Web Interface or AudioCodes Element Management System (EMS), refer to [15], [16] and [17].

**Note:** This section displays the provisioning that was utilized for this sample configuration, and does not show exhaustive procedures for administering an initial configuration. In these Application Notes configuration was accomplished with the web interface.

6.1. Configure the Media Gateway Host IP Network Parameters

To configure the network parameters click on **Add Index** button to add and index with **Application Type** of **OAMP + Media + Control** and ensure the **Interface Mode** is set to **IPv4** and that **IP Address** (i.e. 195.189.192.150) **Prefix Length** (i.e. 24) and **Gateway** (i.e. 195.180.192.129) are set according to the expected values.
Save settings to the device's flash memory and reset the device, by performing the following:

- Navigate (not shown) to the 'Maintenance Actions' page (Management tab → Management Configuration menu → Maintenance Actions).
- Under the Reset Configuration group, from the Burn To FLASH drop-down list, select Yes, and then click the Reset button; the device's new configuration (i.e., global IP address) is saved (burned) to the flash memory and the device resets and now enters HA mode (with Active and Redundant blades). The Web interface session terminates (as it's no longer accessible using the blade's private IP address).

The picture below illustrates the saving process for initial IP configuration.

6.1.1. Saving settings

To permanently save settings to the device's flash memory, activate the Maintenance Actions page (Management tab → Management Configuration menu → Maintenance Actions) and click to the button BURN under Save Configuration as shown below.

Note: If the value changed is highlighted by a lightning bolt ⚡, the setting will take place after system restart.
6.2. Configure the Media Gateway TDM and Timing Parameters

6.2.1. Configure TDM Bus
To configure the TDM Bus settings open the TDM page (Configuration tab \(\rightarrow\) TDM & Timing Configuration menu \(\rightarrow\) TDM), configure TDM Bus Type and TDM Bus Speed parameters as required. (For E1 set TDM Bus Type to Frames and TDM Bus speed to 8Mbps) Click the Submit button to save changes.

![TDM Page](image)

Note: To save the changes to flash memory, refer to Section 6.1.1

6.2.2. Configure Digital PCM Settings
To configure the digital PCM settings, open the Digital PCM Settings page (Configuration tab \(\rightarrow\) TDM & Timing Configuration menu \(\rightarrow\) Digital PCM Settings), configure the parameters as required i.e. PCM Law Select ALaw for E1 and click the Submit button to save changes.

![Digital PCM Settings](image)

Note: To save the changes to flash memory, refer to Section 6.1.1
6.2.3. Configure System Timing

To configure the device's system timing, open the System Timing page (Configuration tab → TDM & Timing Configuration menu → System Timing). Configure the parameters as required. Click the Submit button to save changes. The figure below illustrates the configuration of system timing where the Mediant 3000 is configured as Master Clock Source as used in these Application Notes.

Note: To save the changes to flash memory, refer to Section 6.1.1
6.3. Configure the Media Gateway Media Settings
The Media Settings of the Mediant 3000 Media Gateway can be configured using the web interface.

6.3.1. Configure the Voice Parameters
Open the Voice Settings page (Configuration tab → Media Settings menu → Voice Settings). Set DTMF Transport Type to RFC2833 Relay DTMF as shown in figure below, and click the Submit button to save changes.

Note: To save the changes to flash memory, refer to Section 6.1.1
6.3.2. Configure the Fax Parameters

To configure FAX support, open the Fax/Modem/CID Settings page (Configuration tab → Media Settings menu → Fax/Modem/CID Settings). Set the following values:

- **Fax Transport Mode:** Relay/Enable
- **Fax CNG Mode:** Enable
- **Fax Relay Max Rate:** 33600bps (note that supported bit rate by the entire solution is limited by the capabilities of Communication Manager, capped at 9600bps)

Click the **Submit** button to save changes. The figure below illustrates the Fax settings on the Mediant 3000.

![Fax/Modem/CID Settings](image)

**Note:** To save the changes to flash memory, refer to **Section 6.1.1**
6.3.3. Configure the RTP/RTCP Parameters

Verify and configure RTP parameters by opening the **RTP/RTCP Settings** page (Configuration tab → Media Settings menu → RTP / RTCP Settings). Click the **Submit** button to save changes. The figure below illustrates setting use in these sample Application Notes.

![RTP/RTCP Settings](image)

*Note:* To save the changes to flash memory, refer to **Section 6.1.1**
6.4. Configure the Media Gateway Telephony/PSTN Interface Parameters

Open the Trunk Settings page (Configuration tab → PSTN Settings menu → Trunk Settings). Select the trunk to be configured, by clicking the desired Trunk number icon. The bar initially displays the first eight trunk number icons (i.e., trunks 1 through 8). To scroll through the trunk number icons (i.e., view the next/last or previous/first group of eight trunks), refer to the figure below.

After having selected a trunk, the following is displayed:
- The read-only Trunk ID field displays the selected trunk number
- The read-only Trunk Configuration State displays the state of the trunk (e.g., Active or Inactive)
- The parameters displayed in the page pertain to the selected trunk only

Click the Stop Trunk button (located at the bottom of the page) to take the trunk out of service so that you can configure the currently grayed out (unavailable) parameters. (Skip this step to configure parameters that are available when the trunk is active). The stopped trunk is indicated by the Trunk Configuration State field displaying Inactive. The Stop Trunk button is replaced by the Apply Trunk Settings button. (When all trunks are stopped, the Apply to All Trunks button also appears.) All the parameters are available and can be modified. Configure the desired trunk parameters. Click the Apply Trunk Settings button to apply the changes to the selected trunk (or click Apply to All Trunks to apply the changes to all trunks); the Stop Trunk button replaces Apply Trunk Settings and the Trunk Configuration State displays Active.
In these Application Notes the PSTN interface was configured as it follows:

- **Protocol Type**: E1 EURO ISDN
- **Line Code**: HDB3
- **Framing Method**: E1 FRAMING MFF CRC4 EXT
- **ISDN Termination SIDE**: Network

Refer to [15-18] to configure the different E1 types.

Note: To save the changes to flash memory, refer to Section 6.1.1
6.5. Configure the Media Gateway SIP Protocol Parameters

The SIP protocol interface is configured through a series of configuration steps.

6.5.1. Configure the Trunk Group Table

Open the **Trunk Group Table** page (Configuration tab → Protocol Configuration menu → Trunk Group submenu → Trunk Group). Select the appropriate **Trunk Group Index** and set the appropriate parameters in the table i.e. **From /To Trunk**, **Channels**, **Phone Number**, **Trunk Group ID**, **Tel Profile ID**. For detailed information refer to [15-18]. Click the **Submit** button to save changes. The figure below illustrates setting use in these sample Application Notes.

![Trunk Group Table](image)

**Note:** To save the changes to flash memory, refer to **Section 6.1.1**
6.5.2. Configure the general SIP protocol parameters

Open the SIP General Parameters page (Configuration tab → Protocol Configuration menu → Protocol Definition submenu → SIP General Parameters). Set the following values:

- **Enable Early Media**: Enable
- **Fax Signaling Method**: T.38 Relay
- **SIP Transport Type**: Align with setting in the entity link definition on Session Manager for the Mediant 3000, i.e. UDP.
- **Use Tel URI for Asserted Identity**: Set to Enable if Adaptation is used on Session Manager otherwise set to Disable

Click the Submit button to save changes. The figure below illustrates the SIP General Parameters page.

Note: To save the changes to flash memory, refer to Section 6.1.1
6.5.3. Configure the DTMF and Dialing Parameters

Open the DTMF & Dialing page (Configuration tab → Protocol Configuration menu → Protocol Definition submenu → DTMF & Dialing). Set the following values:

- Declare RFC 2833 in SDP Yes
- 1st Tx DTMF Option Select RFC 2833

Click the Submit button to save changes. The figure below illustrates the SIP General Parameters page.

![SIP General Parameters page]

Note: To save the changes to flash memory, refer to Section 6.1.1
6.5.4. Configure the Proxy & Registration Parameters

Open the Proxy & Registration page (Configuration tab → Protocol Configuration menu → Proxies, Registration, IP Groups submenu → Proxy & Registration). Ensure that Used Default Proxy is set to No and Enable Registration is set to Disable. Click the Submit button to save your changes. The figure below displays the Proxy & Registration page for the system used in these Application Notes.

![Proxy & Registration Parameters](image)

**Note:** To save the changes to flash memory, refer to Section 6.1.1
6.5.5. Configure the Device's Coders

Open the Coders page (Configuration tab → Protocol Configuration menu → Coders And Profile Definitions submenu → Coders).

1. From the Coder Name drop-down list, select the required coder
2. From the Packetization Time drop-down list, select the packetization time (in msec) for the selected coder. The packetization time determines how many coder payloads are combined into a single RTP packet
3. From the Rate drop-down list, select the bit rate (in kbps) for the selected coder
4. In the Payload Type field, if the payload type (i.e. format of the RTP payload) for the selected coder is dynamic, enter a value from 0 to 120 (payload types of well-known coders cannot be modified)
5. From the Silence Suppression drop-down list, enable or disable the silence suppression option for the selected coder
6. Repeat Step 2 through Step 6 for the next optional coders

Click the Submit button to save your changes. In the following figure are presented the codecs used in these Application Notes.

Note: To save the changes to flash memory, refer to Section 6.1.1
The following table describes the Codec Interoperability between Communication Manager and Mediant 3000.

<table>
<thead>
<tr>
<th>Avaya ip codec set</th>
<th>AudioCodes codec definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(G.729 Annex b=no)</td>
<td>(G.729 Annex b=yes)</td>
</tr>
<tr>
<td></td>
<td>Silence suppression=Disabled</td>
<td>Silence Suppression=Enabled</td>
</tr>
<tr>
<td>G.729</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>G.729A</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>G.729B</td>
<td>No interop</td>
<td>ok</td>
</tr>
<tr>
<td>G.729AB</td>
<td>No interop</td>
<td>ok</td>
</tr>
</tbody>
</table>

6.5.6. Configure the IP Profile Settings

Open the IP Profile Settings page (Configuration tab → Protocol Configuration menu → Coders And Profile Definitions submenu → IP Profile Settings). Complete the following steps to define the IP Profile Settings:

1. From the Profile ID drop-down list, select an identification number for the IP Profile.
2. In the Profile Name field, enter an arbitrary name that allows you to easily identify the IP Profile.
3. From the Profile Preference drop-down list, select the priority of the IP Profile, where 1 is the lowest priority and 20 is the highest. If both IP and Tel profiles apply to the same call, the coders and other common parameters (noted by an asterisk) of the preferred Profile are applied to that call. If the Preference of the Tel and IP Profiles is identical, the Tel Profile parameters are applied. **Note:** If the coder lists of both IP and Tel Profiles apply to the same call, only the coders common to both are used. The order of the coders is determined by the preference.
4. Configure the IP Profile's parameters according to your requirements. Parameters that are unique to IP Profile are described in the table below.
5. From the Coder Group drop-down list, select the coder group that need to be assigned to the IP Profile. The device's default coders can be set, or one of the coder groups defined in the Coder Group Settings page.
6. Repeat Step 2 through Step 6 for the next IP Profiles (optional).

Click the Submit button to save changes.
In these Application Notes, the following values were set:

- **Disconnect on Broken Connection**: No
- **Fax Signaling Method**: T.38 Relay
- **Play Ringback tone to IP**: Play

The figure below illustrates the **IP Profile Settings** page.

![IP Profile Settings](image)

**Note:** To save the changes to flash memory, refer to **Section 6.1.1**
6.5.7. Configure the Advanced General Protocol Parameters

Open the Advanced Parameters page (Configuration tab → Protocol Configuration menu → SIP Advanced Parameters submenu → Advanced Parameters). This page allows the configuration of the defaults protocol parameters in case there is no match on the previously configured protocol parameters. In these Application Notes only the Disconnect on Broken Connection was set to No, other configurations may require special care. Refer to [15-18] for additional information. Click the Submit button to save your changes.

Note: To save the changes to flash memory, refer to Section 6.1.1
Configure the Supplementary Services' Parameters

Open the Supplementary Services page (Configuration tab → Protocol Configuration menu → SIP Advanced Parameters submenu → Supplementary Services). Set to Enable the following services:

- Enable Hold  
- Enable Transfer  
- Enable Call Forward  
- Enable Call Waiting  

The figure below illustrates the Supplementary Services page.

Note: To save the changes to flash memory, refer to Section 6.1.1
6.5.9. Configure the Number Manipulation Tables
Open the required Number Manipulation page (Configuration tab → Protocol Configuration menu → Manipulation Tables submenu → Dest Number IP→Tel, Dest Number Tel→IP, Source Number IP→Tel, or Source Number Tel→IP); the relevant Manipulation table page is displayed (e.g., Source Phone Number Manipulation Table for Tel→IP Calls page). The figure shows the manipulation rules for Tel-to-IP source phone number manipulation, used in these Application Notes. For more information on Configuring the Number Manipulation tables refer to [15-18].

![Source Phone Number Manipulation Table for Tel→IP Calls](image)

6.5.10. Configure Inbound IP Routing Rules
Open the Inbound IP Routing Table page (Configuration tab → Protocol Configuration menu → Routing Tables submenu → IP to Trunk Group Routing). Configure the inbound IP routing rules, refer to [15-18] for additional information on Inbound IP Routing Table. The figure below illustrates the Inbound IP Routing Table used in these Application Notes.

![Inbound IP Routing Table](image)
6.5.11. Configure Outbound IP Routing Rules

Open the Outbound IP Routing Table page (Configuration tab → Protocol Configuration menu → Routing Tables submenu → Tel to IP Routing). Configure the Src. Trunk Group ID with the appropriate trunk number (i.e. 5), Dest. Phone Prefix, Source Phone Prefix with the appropriate patterns (i.e. *) and Dest. IP Address with the IP Address of signaling interface of Session Manager (i.e. 193.120.221.154). For additional information on configuring Outbound IP Routing Table, refer to [15-18]. Click on Submit button to save changes. The following pictures illustrate the configuration done in these Application Notes.
Note: To save the changes to flash memory, refer to Section 6.1.1
6.5.12. Configure Release Cause Mapping

Open the Release Cause Mapping page (Configuration tab → Protocol Configuration menu → Routing Tables submenu → Release Cause Mapping). The page is separated into two sections:

- In the Release Cause Mapping from ISDN to SIP group, map different Q.850 Release Causes to SIP Responses.
- In the Release Cause Mapping from SIP to ISDN group, map different SIP Responses to Q.850 Release Causes.

In these Application Notes mapping from Q.850 Cause value 28 is mapped into SIP Response message 404, this was used to ensure the mapping of Invalid Number in the Q.850 was mapped to a SIP 404 for the appropriate interworking. Click the Submit button to save your changes. The figure below illustrates the Release Cause Mapping from ISDN to SIP page.

![Release Cause Mapping from ISDN to SIP](image)

![Release Cause Mapping from SIP to ISDN](image)

**Note:** To save the changes to flash memory, refer to Section 6.1.1
6.6. Configure the Syslog Parameters for Debug Assistance

The Mediant 3000 Media Gateway can be configured to output logs to an external Syslog Server for debug assistance. To configure Syslog facility, open the Management Settings page (Management tab → Management Configuration menu → Management Settings). Configure the following settings:

- **Enable Syslog** Set to **Enable**
- **Syslog Server IP Address** Set to IP address of device running a Syslog Server Application (i.e. 195.189.192.148)
- **Syslog Server Port** Set to port utilized on the Syslog Server listening device (i.e. 514)
- **Debug Level** Set to 5 to capture proper level of debug information

Click the **Submit** button to save changes. The figure below illustrates setting use in these sample Application Notes.

**Note:** The Syslog facility should be used only for Debugging purposes, **Enable** service only when needed and revert to **Disable** once troubleshooting is completed.

![Syslog Configuration](image)

**Note:** To save the changes to flash memory, refer to **Section 6.1.1**
7. Verification Steps

This section provides the verification steps that may be performed to verify that Avaya Enterprise network can establish and receive calls with Mediant 3000.

7.1. Verify Avaya Aura™ Communication Manager Access Element Trunk Status

On Communication Manager Access Element, ensure that all the signaling groups are in-service status by issuing the command status signaling-group *n* where *n* is the signaling group number.

<table>
<thead>
<tr>
<th>status signaling-group 3</th>
<th>STATUS SIGNALING GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID: 3</td>
<td>Active NCA-TSC Count: 0</td>
</tr>
<tr>
<td>Group Type: sip</td>
<td>Active CA-TSC Count: 0</td>
</tr>
<tr>
<td>Signaling Type: facility associated signaling</td>
<td></td>
</tr>
<tr>
<td>Group State: in-service</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>status signaling-group 4</th>
<th>STATUS SIGNALING GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID: 4</td>
<td>Active NCA-TSC Count: 0</td>
</tr>
<tr>
<td>Group Type: sip</td>
<td>Active CA-TSC Count: 0</td>
</tr>
<tr>
<td>Signaling Type: facility associated signaling</td>
<td></td>
</tr>
<tr>
<td>Group State: in-service</td>
<td></td>
</tr>
</tbody>
</table>
7.2. SIP Monitoring on Avaya Aura™ Session Manager

Expand the menu on the left and navigate Session Manager → System Status → SIP Entity Monitoring. Verify that none of the links to the defined SIP entities are down, indicating that they are all reachable for call routing.

![SIP Entity Link Monitoring Status Summary](image)

7.3. Utilizing the Web Interface to observe Status

The Status & Diagnostics menu is used to view and monitor the device's channels, Syslog messages, hardware and software product information, and to assess the device's statistics and IP connectivity information.

7.3.1. Device Status

To view the status of the device's hardware components, open the Components Status page (Status & Diagnostics tab → Status & Diagnostics menu → Components Status). The figure below illustrates Component Status page for an HA/Redundant gateway where the TP18410 board in slot 1 is active and the second in slot 3 is Redundant.

![Components Status](image)
7.3.2. Device Information

To access the Device Information page, open the 'Device Information' page (Status & Diagnostics tab → Status & Diagnostics menu → Device Information).

7.3.3. Trunks and Channels Status

To view the status of the device's trunks and the trunks' channels, open the Trunks & Channels Status page (Status & Diagnostics tab → Status & Diagnostics menu → Trunks & Channels Status). The following figure illustrates the Trunks and Channel status, where the symbol of the port in green represent channels engaged with a call.
7.3.4. **Gateway Home Page**

To view the status of the device home page, open the **Home** page by selecting from the top the following ICON: ![Home](image). The following figure displays an HA system that has both TP8410 modules in service, ready for switchover, as described by the General information table, where **High Availability** is **Operational**.

![Gateway Home Page](image)

The following figure displays an HA system that has both TP8410 modules in service, but not ready for switchover, as described by the General information table, where **High Availability** is **Standalone**.

![Gateway Home Page](image)
8. General Test Approach

The interoperability compliance test included feature and serviceability. The feature testing focused on verifying the following:

Basic Interoperability:
- PSTN calls from and to Avaya IP endpoint
- Calling with various Avaya IP telephone models as well as traditional analog and digital TDM phones
- Support G.711A/MU G.729A/B
- Various PTSN dialing plans including national and international calling, toll-free, operator, directory assistance and direct inward dialed calling
- SIP transport using UDP and TCP

Advanced Interoperability:
  - Codec negotiation
  - Telephony supplementary features, such as Hold, Call Transfer, Conference Calling and Call Forwarding
  - DTMF Tone Support
  - Voicemail Coverage and Retrieval
  - Direct IP-to-IP Media
  - EC500 for Communication Manager

The serviceability testing focused on verifying the ability of solution to recover from adverse conditions, such as network failures and failover between the Active/Standby modules on the gateway.

8.1. Test Results and Remarks
All test cases were executed.

9. Conclusion

As illustrated in these Application Notes, AudioCodes Mediant 3000 Gateway can successfully offer access to E1 PSTN to an Enterprise telephony network built on Avaya Aura™ Session Manager and Avaya Aura™ Communication Manager Access Element.
10. Additional References

Avaya references, available at http://support.avaya.com


AudioCodes Mediant 3000 references are available at http://www.audiocodes.com/support

APPENDIX

In this section are presented the relevant configuration files for the devices used in the DevConnect compliance testing.

Configure the Number Manipulation tables

Open the required Number Manipulation page (Configuration tab → Protocol Configuration menu → Manipulation Tables submenu → Dest Number IP→Tel, Dest Number Tel→IP, Source Number IP→Tel, or Source Number Tel→IP); the relevant Manipulation table page is displayed (e.g., Source Phone Number Manipulation Table for Tel→IP Calls page). The figure shows an example of the use of manipulation rules for Tel-to-IP source phone number manipulation:

<table>
<thead>
<tr>
<th>Index</th>
<th>Source Trunk Group</th>
<th>Source IP Group</th>
<th>Destination Prefix</th>
<th>Source Prefix</th>
<th>Stripped Digits From Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>03</td>
<td>201</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1001</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>123451001#</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>30-405#</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>[6,7,8]</td>
<td>2001</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stripped Digits From Right</th>
<th>Prefix to Add</th>
<th>Suffix to Add</th>
<th>Number of Digits to Leave</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>921</td>
<td></td>
<td>155</td>
<td>Allowed</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>23</td>
<td>155</td>
<td>Restricted</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
<td>155</td>
<td>Not Configured</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>155</td>
<td>Not Configured</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>155</td>
<td>Not Configured</td>
</tr>
</tbody>
</table>

**Index 1:** When the destination number has the prefix 03 (e.g., 035000), source number prefix 201 (e.g., 20155), and from source IP Group ID 2, the source number is changed to, for example, 97120155.

**Index 2:** When the source number has prefix 1001 (e.g., 1001876), it is changed to 587623.

**Index 3:** When the source number has prefix 123451001 (e.g., 1234510012001), it is changed to 20018.

**Index 4:** When the source number has prefix from 30 to 40 and a digit (e.g., 3122), it is changed to 2312.

**Index 5:** When the destination number has the prefix 6, 7, or 8 (e.g., 85262146), source number prefix 2001, it is changed to 3146.

From the Table Index drop-down list, select the range of entries that you want to edit. Configure the Number Manipulation table according to the table below. Click the Submit button to save your changes.
Configure outbound IP routing rules

Open the **Outbound IP Routing Table** page (Configuration tab → Protocol Configuration menu → Routing Tables submenu → Tel to IP Routing).

Rule 1:	If the called phone prefix is 10 and the caller's phone prefix is 100, the call is assigned settings configured for IP Profile ID 1 and sent to IP address 10.33.45.63.
Rule 2:	If the called phone prefix is 20 and the caller is all prefixes (*), the call is sent to the destination according to IP Group 1 (which in turn is associated with a Proxy Set ID providing the IP address).
Rule 3:	If the called phone prefix is between 30 and 40, and the caller belongs to Trunk Group ID 1, the call is sent to IP address 10.33.45.64.
Rule 4:	If the called phone prefix is either 5, 7, 8, or 9 and the caller is all (*), the call is sent to domain.com.
Rule 5:	If the called phone prefix is 00 and the caller is all (*), the call is discarded.
Rule 6:	If an incoming IP call pertaining to Source IP Group 2 with domain.com as source host prefix in its Request URI, the IP call is sent to IP address 10.33.45.65. From the 'Routing Index' drop-down list, select the range of entries that you want to add. Configure the outbound IP routing rules according to the table below. Click the Submit button to apply your changes.

The figure above shows the following configured outbound IP routing rules:

Rule 1:	If the called phone prefix is 10 and the caller's phone prefix is 100, the call is assigned settings configured for IP Profile ID 1 and sent to IP address 10.33.45.63.
Rule 2:	If the called phone prefix is 20 and the caller is all prefixes (*), the call is sent to the destination according to IP Group 1 (which in turn is associated with a Proxy Set ID providing the IP address).
Rule 3:	If the called phone prefix is between 30 and 40, and the caller belongs to Trunk Group ID 1, the call is sent to IP address 10.33.45.64.
Rule 4:	If the called phone prefix is either 5, 7, 8, or 9 and the caller is all (*), the call is sent to domain.com.
Rule 5:	If the called phone prefix is 00 and the caller is all (*), the call is discarded.
Rule 6:	If an incoming IP call pertaining to Source IP Group 2 with domain.com as source host prefix in its Request URI, the IP call is sent to IP address 10.33.45.65. From the 'Routing Index' drop-down list, select the range of entries that you want to add. Configure the outbound IP routing rules according to the table below. Click the Submit button to apply your changes.
Configure inbound IP routing rules

Open the Inbound IP Routing Table page (Configuration tab → Protocol Configuration menu → Routing Tables submenu → IP to Trunk Group Routing).

<table>
<thead>
<tr>
<th>Routing Index</th>
<th>IP To Tel Routing Mode</th>
<th>Dest. Host Prefix</th>
<th>Source Host Prefix</th>
<th>Dest. Phone Prefix</th>
<th>Source Phone Prefix</th>
<th>Source IP Address</th>
<th>Trunk Group ID</th>
<th>IP Profile ID</th>
<th>Source IP Group ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>[501-502]</td>
<td>101</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>domain.com</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.13.64.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The previous figure shows the following configured inbound IP routing rules:

**Rule 1:** If the incoming IP call destination phone prefix is between 10 and 19, the call is assigned settings configured for IP Profile ID 2 and routed to Trunk Group ID 1.

**Rule 2:** If the incoming IP call destination phone prefix is between 501 and 502, and source phone prefix is 101, the call is assigned settings configured for IP Profile ID 1 and routed to Trunk Group ID 2.

**Rule 3:** If the incoming IP call has a From URI host prefix as domain.com, the call is routed to Trunk Group ID 3.

**Rule 4:** If the incoming IP call has IP address 10.13.64.5 in the INVITE’s Contact header, the call is considered an IP-to-IP call and assigned to Source IP Group 4. This call is later routed according to the outbound IP routing rules for this Source IP Group configured in the ‘Outbound IP Routing Table’.

From the 'Routing Index' drop-down list, select the range of entries that you want to add. Configure the inbound IP routing rule according to the table below. Click the Submit button to save your changes.
AudioCodes Mediant 3000 configuration file
The Mediant 3000 ini file used in these Application Notes.

```ini
;***************
]** Ini File **
;***************

;Board: TrunkPack 8410
;Serial Number: 1996115
;Slot Number: 1
;Software Version: 6.00A.014.005
;DSP Software Version: 491096AE3 => 600.17
;Board IP Address: 195.189.192.150
;Board Subnet Mask: 255.255.255.0
;Board Default Gateway: 195.189.192.129
;Ram size: 512M Flash size: 32M
;Num of DSP Cores: 126 Num DSP Channels: 2016
;Profile: NONE
;Key features:
;Board Type: TrunkPack 8410
;SS7 Links: MTP2=16 MTP3=16 M2UA=16 M3UA=1
;IP Media: Conf VoicePromptAnnounc(H248.9) CALEA TrunkTesting POC
;DSP Voice features: IpmDetector RTCP-XR AMRPolicyManagement
;Coders: G723 G729 G728 NETCODER GSM-FR GSM-EFR AMR EVRC-QCELP G727 ILBC EVRC-B AMR-WB
;G722 H263 H264 MPEG4 EG711
;PSTN FALLBACK Supported
;E1Trunks=84
;T1Trunks=84;Security: IPSEC MediaEncryption StrongEncryption EncryptControlProtocol
;PSTN Protocols: IUA=16
;Channel Type: RTP ATM PCI DspCh=2016 IPMediaDspCh=480
;M3K HA
;Control Protocols: MGCP MEGACO H323 SIP TPNCIP SSSurvivability IP2IP=100 MSFT
;Default features:
;Coders: G711 G726

[SYSTEM Params]
DNSPriServerIP = 80.179.52.100
SyslogServerIP = 195.189.192.148
EnableSyslog = 1

[BSP Params]
PCMLawSelect = 1
TDMBusSpeed = 3
StorageServerNetworkAddress = 255.255.255.255

[ControlProtocols Params]
AdminStateLockControl = 0
cpRecordCoder = 'PCMA'

[MGCP Params]

[MEGACO Params]
EP_Num_0 = 0
EP_Num_1 = 1
EP_Num_2 = 0
EP_Num_3 = 0
EP_Num_4 = 0

[PSTN Params]
```

---
| ProtocolType_0 | ProtocolType_1 | ProtocolType_2 | ProtocolType_3 | ProtocolType_4 | ProtocolType_5 | ProtocolType_6 | ProtocolType_7 | ProtocolType_8 | ProtocolType_9 | ProtocolType_10 | ProtocolType_11 | ProtocolType_12 | ProtocolType_13 | ProtocolType_14 | ProtocolType_15 | ProtocolType_16 | ProtocolType_17 | ProtocolType_18 | ProtocolType_19 | ProtocolType_20 | ProtocolType_21 | ProtocolType_22 | ProtocolType_23 | ProtocolType_24 | ProtocolType_25 | ProtocolType_26 | ProtocolType_27 | ProtocolType_28 | ProtocolType_29 | ProtocolType_30 | ProtocolType_31 | ProtocolType_32 | ProtocolType_33 | ProtocolType_34 | ProtocolType_35 | ProtocolType_36 | ProtocolType_37 | ProtocolType_38 | ProtocolType_39 | ProtocolType_40 | ProtocolType_41 | ProtocolType_42 | ProtocolType_43 | ProtocolType_44 | ProtocolType_45 | ProtocolType_46 | ProtocolType_47 | ProtocolType_48 | ProtocolType_49 | ProtocolType_50 | ProtocolType_51 | ProtocolType_52 | ProtocolType_53 | ProtocolType_54 | ProtocolType_55 | ProtocolType_56 | ProtocolType_57 | ProtocolType_58 | ProtocolType_59 | ProtocolType_60 | ProtocolType_61 |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
ProtocolType_62 = 0
ClockMaster_0 = 1
ClockMaster_1 = 0
ClockMaster_2 = 0
ClockMaster_3 = 0
ClockMaster_4 = 0
ClockMaster_5 = 0
ClockMaster_6 = 0
ClockMaster_7 = 0
ClockMaster_8 = 0
ClockMaster_9 = 0
ClockMaster_10 = 0
ClockMaster_11 = 0
ClockMaster_12 = 0
ClockMaster_13 = 0
ClockMaster_14 = 0
ClockMaster_15 = 0
ClockMaster_16 = 0
ClockMaster_17 = 0
ClockMaster_18 = 0
ClockMaster_19 = 0
ClockMaster_20 = 0
ClockMaster_21 = 0
ClockMaster_22 = 0
ClockMaster_23 = 0
ClockMaster_24 = 0
ClockMaster_25 = 0
ClockMaster_26 = 0
ClockMaster_27 = 0
ClockMaster_28 = 0
ClockMaster_29 = 0
ClockMaster_30 = 0
ClockMaster_31 = 0
ClockMaster_32 = 0
ClockMaster_33 = 0
ClockMaster_34 = 0
ClockMaster_35 = 0
ClockMaster_36 = 0
ClockMaster_37 = 0
ClockMaster_38 = 0
ClockMaster_39 = 0
ClockMaster_40 = 0
ClockMaster_41 = 0
ClockMaster_42 = 0
ClockMaster_43 = 0
ClockMaster_44 = 0
ClockMaster_45 = 0
ClockMaster_46 = 0
ClockMaster_47 = 0
ClockMaster_48 = 0
ClockMaster_49 = 0
ClockMaster_50 = 0
ClockMaster_51 = 0
ClockMaster_52 = 0
ClockMaster_53 = 0
ClockMaster_54 = 0
ClockMaster_55 = 0
ClockMaster_56 = 0
ClockMaster_57 = 0
ClockMaster_58 = 0
ClockMaster_59 = 0
ClockMaster_60 = 0
<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClockMaster_61</td>
<td>0</td>
</tr>
<tr>
<td>ClockMaster_62</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_0</td>
<td>1</td>
</tr>
<tr>
<td>TerminationSide_1</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_2</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_3</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_4</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_5</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_6</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_7</td>
<td>1</td>
</tr>
<tr>
<td>TerminationSide_8</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_9</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_10</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_11</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_12</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_13</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_14</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_15</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_16</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_17</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_18</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_19</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_20</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_21</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_22</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_23</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_24</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_25</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_26</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_27</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_28</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_29</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_30</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_31</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_32</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_33</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_34</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_35</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_36</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_37</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_38</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_39</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_40</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_41</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_42</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_43</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_44</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_45</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_46</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_47</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_48</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_49</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_50</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_51</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_52</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_53</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_54</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_55</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_56</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_57</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_58</td>
<td>0</td>
</tr>
<tr>
<td>TerminationSide_59</td>
<td>0</td>
</tr>
</tbody>
</table>
TerminationSide_60 = 0
TerminationSide_61 = 0
TerminationSide_62 = 0
FramingMethod_0 = c
FramingMethod_1 = 0
FramingMethod_2 = 0
FramingMethod_3 = 0
FramingMethod_4 = 0
FramingMethod_5 = 0
FramingMethod_6 = 0
FramingMethod_7 = c
FramingMethod_8 = 0
FramingMethod_9 = 0
FramingMethod_10 = 0
FramingMethod_11 = 0
FramingMethod_12 = 0
FramingMethod_13 = 0
FramingMethod_14 = 0
FramingMethod_15 = 0
FramingMethod_16 = 0
FramingMethod_17 = 0
FramingMethod_18 = 0
FramingMethod_19 = 0
FramingMethod_20 = 0
FramingMethod_21 = 0
FramingMethod_22 = 0
FramingMethod_23 = 0
FramingMethod_24 = 0
FramingMethod_25 = 0
FramingMethod_26 = 0
FramingMethod_27 = 0
FramingMethod_28 = 0
FramingMethod_29 = 0
FramingMethod_30 = 0
FramingMethod_31 = 0
FramingMethod_32 = 0
FramingMethod_33 = 0
FramingMethod_34 = 0
FramingMethod_35 = 0
FramingMethod_36 = 0
FramingMethod_37 = 0
FramingMethod_38 = 0
FramingMethod_39 = 0
FramingMethod_40 = 0
FramingMethod_41 = 0
FramingMethod_42 = 0
FramingMethod_43 = 0
FramingMethod_44 = 0
FramingMethod_45 = 0
FramingMethod_46 = 0
FramingMethod_47 = 0
FramingMethod_48 = 0
FramingMethod_49 = 0
FramingMethod_50 = 0
FramingMethod_51 = 0
FramingMethod_52 = 0
FramingMethod_53 = 0
FramingMethod_54 = 0
FramingMethod_55 = 0
FramingMethod_56 = 0
FramingMethod_57 = 0
FramingMethod_58 = 0
FramingMethod_59 = 0
FramingMethod_60 = 0
FramingMethod_61 = 0
FramingMethod_62 = 0
LineCode_0 = 2
LineCode_1 = 0
LineCode_2 = 0
LineCode_3 = 0
LineCode_4 = 0
LineCode_5 = 0
LineCode_6 = 0
LineCode_7 = 2
LineCode_8 = 0
LineCode_9 = 0
LineCode_10 = 0
LineCode_11 = 0
LineCode_12 = 0
LineCode_13 = 0
LineCode_14 = 0
LineCode_15 = 0
LineCode_16 = 0
LineCode_17 = 0
LineCode_18 = 0
LineCode_19 = 0
LineCode_20 = 0
LineCode_21 = 0
LineCode_22 = 0
LineCode_23 = 0
LineCode_24 = 0
LineCode_25 = 0
LineCode_26 = 0
LineCode_27 = 0
LineCode_28 = 0
LineCode_29 = 0
LineCode_30 = 0
LineCode_31 = 0
LineCode_32 = 0
LineCode_33 = 0
LineCode_34 = 0
LineCode_35 = 0
LineCode_36 = 0
LineCode_37 = 0
LineCode_38 = 0
LineCode_39 = 0
LineCode_40 = 0
LineCode_41 = 0
LineCode_42 = 0
LineCode_43 = 0
LineCode_44 = 0
LineCode_45 = 0
LineCode_46 = 0
LineCode_47 = 0
LineCode_48 = 0
LineCode_49 = 0
LineCode_50 = 0
LineCode_51 = 0
LineCode_52 = 0
LineCode_53 = 0
LineCode_54 = 0
LineCode_55 = 0
LineCode_56 = 0
LineCode_57 = 0
LineCode_58 = 0
LineCode_59 = 0
LineCode_60 = 0
LineCode_61 = 0
LineCode_62 = 0
CASProtocolEnable = 0

[SS7 Params]
CallProgressTonesFilename = 'usa_tones_1221.dat'
DisableRTCPRandomize = 1
DTMFDetectorSensitivity = 1
SRTPxPacketMKISize = 1

[WEB Params]
LogoWidth = '145'
HTTPSCipherString = 'ALL'

[SIP Params]
PLAYRBTONE2IP = 1
MEDIACHANNELS = 60
PLAYRBTONE2TEL = 1
USESIUPURIFORDIVERSIONHEADER = 1
CHANNELSELECTMODE = 1
GWDEBUGLEVEL = 5
ENABLEEARLYMEDIA = 1
SIPGATEWAYNAME = '195.189.192.138'
DISCONNECTONBROKENCONNECTION = 0
ISFAXUSED = 1
HOLDFORMAT = 1
SIPTRANSPORTTYPE = 1
TLSLOCALSIPPORT = 5064
LOCALISDNRSOURCE = 1
MEDIASUREBEHAVIOUR = 1
USEDIGITFORSPECIALDTMF = 1
FAXCMODE = 1
DIGITALOOSBEHAVIORFORTRUNK_0 = 0
DIGITALOOSBEHAVIORFORTRUNK_1 = -1
DIGITALOOSBEHAVIORFORTRUNK_2 = -1
DIGITALOOSBEHAVIORFORTRUNK_3 = -1
DIGITALOOSBEHAVIORFORTRUNK_4 = -1
DIGITALOOSBEHAVIORFORTRUNK_5 = -1
DIGITALOOSBEHAVIORFORTRUNK_6 = -1
DIGITALOOSBEHAVIORFORTRUNK_7 = 0
DIGITALOOSBEHAVIORFORTRUNK_8 = -1
DIGITALOOSBEHAVIORFORTRUNK_9 = -1
DIGITALOOSBEHAVIORFORTRUNK_10 = -1
DIGITALOOSBEHAVIORFORTRUNK_11 = -1
DIGITALOOSBEHAVIORFORTRUNK_12 = -1
DIGITALOOSBEHAVIORFORTRUNK_13 = -1
DIGITALOOSBEHAVIORFORTRUNK_14 = -1
DIGITALOOSBEHAVIORFORTRUNK_15 = -1
DIGITALOOSBEHAVIORFORTRUNK_16 = -1
DIGITALOOSBEHAVIORFORTRUNK_17 = -1
DIGITALOOSBEHAVIORFORTRUNK_18 = -1
DIGITALOOSBEHAVIORFORTRUNK_19 = -1
DIGITALOOSBEHAVIORFORTRUNK_20 = -1
DIGITALOOSBEHAVIORFORTRUNK_21 = -1
DIGITALOOSBEHAVIORFORTRUNK_22 = -1
DIGITALOOSBEHAVIORFORTRUNK_23 = -1
DIGITALOOSBEHAVIORFORTRUNK_24 = -1
DIGITALOOSBEHAVIORFORTRUNK_25 = -1
DIGITALOOSBEHAVIORFORTRUNK_26 = -1
DIGITALOOSBEHAVIORFORTRUNK_27 = -1
DIGITALOOSBEHAVIORFORTRUNK_28 = -1
DIGITALOOSBEHAVIORFORTRUNK_29 = -1
DIGITALOOSBEHAVIORFORTRUNK_30 = -1
DIGITALOOSBEHAVIORFORTRUNK_31 = -1
DIGITALOOSBEHAVIORFORTRUNK_32 = -1
DIGITALOOSBEHAVIORFORTRUNK_33 = -1
DIGITALOOSBEHAVIORFORTRUNK_34 = -1
DIGITALOOSBEHAVIORFORTRUNK_35 = -1
DIGITALOOSBEHAVIORFORTRUNK_36 = -1
DIGITALOOSBEHAVIORFORTRUNK_37 = -1
DIGITALOOSBEHAVIORFORTRUNK_38 = -1
DIGITALOOSBEHAVIORFORTRUNK_39 = -1
DIGITALOOSBEHAVIORFORTRUNK_40 = -1
DIGITALOOSBEHAVIORFORTRUNK_41 = -1
DIGITALOOSBEHAVIORFORTRUNK_42 = -1
DIGITALOOSBEHAVIORFORTRUNK_43 = -1
DIGITALOOSBEHAVIORFORTRUNK_44 = -1
DIGITALOOSBEHAVIORFORTRUNK_45 = -1
DIGITALOOSBEHAVIORFORTRUNK_46 = -1
DIGITALOOSBEHAVIORFORTRUNK_47 = -1
DIGITALOOSBEHAVIORFORTRUNK_48 = -1
DIGITALOOSBEHAVIORFORTRUNK_49 = -1
DIGITALOOSBEHAVIORFORTRUNK_50 = -1
DIGITALOOSBEHAVIORFORTRUNK_51 = -1
DIGITALOOSBEHAVIORFORTRUNK_52 = -1
DIGITALOOSBEHAVIORFORTRUNK_53 = -1
DIGITALOOSBEHAVIORFORTRUNK_54 = -1
DIGITALOOSBEHAVIORFORTRUNK_55 = -1
DIGITALOOSBEHAVIORFORTRUNK_56 = -1
DIGITALOOSBEHAVIORFORTRUNK_57 = -1
DIGITALOOSBEHAVIORFORTRUNK_58 = -1
DIGITALOOSBEHAVIORFORTRUNK_59 = -1
DIGITALOOSBEHAVIORFORTRUNK_60 = -1
DIGITALOOSBEHAVIORFORTRUNK_61 = -1
DIGITALOOSBEHAVIORFORTRUNK_62 = -1

[SCTP Params]

[VXML Params]

[IPsec Params]

[Audio Staging Params]

[SNMP Params]

[Video Params]

; *** TABLE DspTemplates ***
; This table contains hidden elements and will not be exposed.
; This table exists on board and will be saved during restarts
;
;
; *** TABLE PREFIX ***
;
;
[ PREFIX ]
FORMAT PREFIX_Index = PREFIX_DestinationPrefix, PREFIX_DestAddress,
PREFIX_SourcePrefix, PREFIX_ProfileId, PREFIX_MeteringCode, PREFIX_DestPort,
PREFIX_SrcIPGroupID, PREFIX_DestHostPrefix, PREFIX_DestIPGroupID,
PREFIX_SrcHostPrefix, PREFIX_TransportType, PREFIX_SrcTrunkGroupID;
PREFIX 0 = *, 193.120.221.154, *, 0, 255, 0, -1, , -1, , -1, 5;
[ \PREFIX ]
;
*** TABLE CoderName ***
; This table contains hidden elements and will not be exposed.
; This table exists on board and will be saved during restarts
;
*** TABLE TrunkGroup ***
;
[ TrunkGroup ]
FORMAT TrunkGroup_Index = TrunkGroup_TrunkGroupNum, TrunkGroup_FirstTrunkId,
TrunkGroup_FirstBChannel, TrunkGroup_LastBChannel, TrunkGroup_FirstPhoneNum,
TrunkGroup_ProfileId, TrunkGroup_LastTrunkId, TrunkGroup_Module;
TrunkGroup 0 = 5, 7, 1, 31, 1000, 0, 7, 255;
[ \TrunkGroup ]
;
*** TABLE NumberMapIp2Tel ***
;
[ NumberMapIp2Tel ]
FORMAL NumberMapIp2Tel_Index = NumberMapIp2Tel_DestinationPrefix,
NumberMapIp2Tel_SourcePrefix, NumberMapIp2Tel_SourceAddress,
NumberMapIp2Tel_NumberType, NumberMapIp2Tel_NumberPlan,
NumberMapIp2Tel_RemoveFromLeft, NumberMapIp2Tel_RemoveFromRight,
NumberMapIp2Tel_LeaveFromRight, NumberMapIp2Tel_FirstBChannel,
NumberMapIp2Tel_Suffix2Add, NumberMapIp2Tel_IsPresentationRestricted,
NumberMapIp2Tel_SrcTrunkGroupID, NumberMapIp2Tel_SrcIPGroupID;
NumberMapIp2Tel 1 = *, *, *, 255, 255, 0, 0, 255, , , 255, -1, -1;
[ \NumberMapIp2Tel ]
;
*** TABLE NumberMapTel2Ip ***
;
[ NumberMapTel2Ip ]
FORMAL NumberMapTel2Ip_Index = NumberMapTel2Ip_DestinationPrefix,
NumberMapTel2Ip_SourcePrefix, NumberMapTel2Ip_SourceAddress,
NumberMapTel2Ip_NumberType, NumberMapTel2Ip_NumberPlan,
NumberMapTel2Ip_RemoveFromLeft, NumberMapTel2Ip_RemoveFromRight,
NumberMapTel2Ip_LeaveFromRight, NumberMapTel2Ip_FirstBChannel,
NumberMapTel2Ip_Suffix2Add, NumberMapTel2Ip_IsPresentationRestricted,
NumberMapTel2Ip_SrcTrunkGroupID, NumberMapTel2Ip_SrcIPGroupID;
NumberMapTel2Ip 0 = +, 44*, *, 255, 255, 0, 0, 255, , , 255, -1, -1;
NumberMapTel2Ip 1 = , 44*, *, 255, 255, 0, 0, 255, +1, , 255, -1, -1;
[ \NumberMapTel2Ip ]
;
*** TABLE SourceNumberMapIp2Tel ***
;
[ SourceNumberMapIp2Tel ]
FORMAL SourceNumberMapIp2Tel_Index = SourceNumberMapIp2Tel_DestinationPrefix,
SourceNumberMapIp2Tel_SourcePrefix, SourceNumberMapIp2Tel_SourceAddress,
SourceNumberMapIp2Tel_NumberType, SourceNumberMapIp2Tel_NumberPlan,
SourceNumberMapIp2Tel_RemoveFromLeft, SourceNumberMapIp2Tel_RemoveFromRight,
SourceNumberMapIp2Tel_LeaveFromRight, SourceNumberMapIp2Tel_FirstBChannel,
SourceNumberMapIp2Tel_Suffix2Add, SourceNumberMapIp2Tel_IsPresentationRestricted,
SourceNumberMapIp2Tel_SrcTrunkGroupID, SourceNumberMapIp2Tel_SrcIPGroupID;
SourceNumberMapIp2Tel 0 = *, +1, *, 255, 255, 2, 0, 255, , , 255, -1, -1;
SourceNumberMapIp2Tel 1 = *, +, 255, 255, 1, 0, 255, , , 255, -1, -1;
[ \SourceNumberMapIp2Tel ]
```c
; *** TABLE PstnPrefix ***
;
[PstnPrefix]
FORMAT PstnPrefix_Index = PstnPrefixDestPrefix, PstnPrefixTrunkGroupId,
PstnPrefixSourcePrefix, PstnPrefixSourceAddress, PstnPrefixProfileId,
PstnPrefixSrcIPGroupID, PstnPrefixDestHostPrefix, PstnPrefixSrcHostPrefix;
PstnPrefix 0 = *, 5, *, 0, -1, ;
[\PstnPrefix]

; *** TABLE CauseMapIsdn2Sip ***
;
[CauseMapIsdn2Sip]
FORMAT CauseMapIsdn2Sip_Index = CauseMapIsdn2SipIsdnReleaseCause,
CauseMapIsdn2SipIsdnResponse;
CauseMapIsdn2Sip 0 = 28, 404;
[\CauseMapIsdn2Sip]

; *** TABLE ProxyIp ***
;
[ProxyIp]
FORMAT ProxyIp_Index = ProxyIpIpAddress, ProxyIpTransportType, ProxyIpProxySetId;
ProxyIp 2 = 195.189.192.142, 0, 3;
[\ProxyIp]

; *** TABLE TxDtmfOption ***
;
[TxDtmfOption]
FORMAT TxDtmfOption_Index = TxDtmfOptionType;
TxDtmfOption 0 = 4;
[\TxDtmfOption]

; *** TABLE ProxySet ***
;
[ProxySet]
FORMAT ProxySet_Index = ProxySetEnableProxyKeepAlive, ProxySetProxyKeepAliveTime,
ProxySetProxyLoadBalancingMethod, ProxySetIsProxyHotSwap, ProxySetSRD,
ProxySetClassificationInput;
ProxySet 0 = 0, 60, 0, 0, 0, 0;
ProxySet 3 = 0, 60, 0, 0, 0, 0;
[\ProxySet]

; *** TABLE IPGroup ***
;
[IPGroup]
FORMAT IPGroup_Index = IPGroupType, IPGroupDescription, IPGroupProxySetId,
IPGroupSIPGroupName, IPGroupContactUser, IPGroupEnableSurvivability,
IPGroupServingIPGroup, IPGroupSipReRoutingMode, IPGroupAlwaysUseRouteTable,
IPGroupRoutingMode, IPGroupSRD, IPGroupMediaRealm, IPGroupClassifyByProxySet,
IPGroupProfileId, IPGroupMaxNumOfRegUsers, IPGroupInboundManSet,
IPGroupOutboundManSet;
IPGroup 1 = 0, -1, , 0, -1, 0, 0, -1, 0, 1, 0, -1, -1, -1;
IPGroup 2 = 0, -1, , 0, -1, 0, 0, -1, 0, 1, 0, -1, -1, -1;
[\IPGroup]

; *** TABLE CodersGroup0 ***
;
; [CodersGroup0]
FORMAT CodersGroup0_Index = CodersGroup0_Name, CodersGroup0_pTime, CodersGroup0_rate,
CodersGroup0_PayloadType, CodersGroup0_Sce;
CodersGroup0 0 = g711Alaw64k, 20, 0, -1, 0;
CodersGroup0 1 = g711Ulaw64k, 20, 0, -1, 0;
CodersGroup0 2 = g729, 20, 0, -1, 0;
[\CodersGroup0]
; *** TABLE CodersGroup1 ***
;
; [CodersGroup1]
FORMAT CodersGroup1_Index = CodersGroup1_Name, CodersGroup1_pTime, CodersGroup1_rate,
CodersGroup1_PayloadType, CodersGroup1_Sce;
CodersGroup1 0 = g711Alaw64k, 20, 0, -1, 0;
[\CodersGroup1]
; *** TABLE CodersGroup2 ***
;
; [CodersGroup2]
FORMAT CodersGroup2_Index = CodersGroup2_Name, CodersGroup2_pTime, CodersGroup2_rate,
CodersGroup2_PayloadType, CodersGroup2_Sce;
CodersGroup2 0 = g729, 20, 0, -1, 0;
[\CodersGroup2]
; *** TABLE InterfaceTable ***
;
; [InterfaceTable]
FORMAT InterfaceTable_Index = InterfaceTable_ApplicationTypes,
InterfaceTable_InterfaceMode, InterfaceTable_IPAddress, InterfaceTable_PrefixLength,
InterfaceTable_Gateway, InterfaceTable_VlanID, InterfaceTable_InterfaceName;
InterfaceTable 0 = 6, 10, 195.189.192.150, 24, 195.189.192.129, 1, O+M+C;
[\InterfaceTable]
©2010 Avaya Inc. All Rights Reserved.
Avaya and the Avaya Logo are trademarks of Avaya Inc. All trademarks identified by ® and ™ are registered trademarks or trademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners. The information provided in these Application Notes is subject to change without notice. The configurations, technical data, and recommendations provided in these Application Notes are believed to be accurate and dependable, but are presented without express or implied warranty. Users are responsible for their application of any products specified in these Application Notes.

Please e-mail any questions or comments pertaining to these Application Notes along with the full title name and filename, located in the lower right corner, directly to the Avaya DevConnect Program at devconnect@avaya.com.