APl Reference Guide

AudioCodes WebRTC Solutions for Enterprises

WebRTC Android Client SDK

Version 2.2.0

QX audiocodes




Contents WebRTC

Table of Contents

NOTICE cerrueiiiiiiiiiiiitiinirrir it essrreaesstresesssstrnsessssnnsssssssrnssssssrsnsssssnsnssssssssnsssssssnsssssssnnssssns Vi
SECUNITY VUINEIaDIlITIES c.eveeee et e e e e e e st e e e sata e e e snneees Vi
WEEE EU DiF@CHIVE .ttt ettt ettt e e e e ettt et e e e e e st ee e et e e e e e e annrnaeeeeeeeeaannns vi
CUSTOMBE SUPPOIT. .ttt e e e e e et e e e e e s e b e e e e e e e e e saabnbeeeeeeeesannnnnneee vi
Stay in the LoOp With AUAIOCOUES.......ciiiiiiiiieiiiie et e e e s e s s e e e s naeee s vi
Abbreviations and TerMINOIOZY .....coucuiiiiiiiiiieiiie e e e s e e e bree e e s nes Vi
Related DOCUMENTATION. ....ciiiiiiiiie ittt ettt ettt e s bt e e bt e e sabeesbaeesabeesabeeeneee Vi
Document REVISION RECONT .....iiiuiiiiiiieiiiie ettt ettt ettt et sttt e st e e it e e st e s beeesabeesaneeenns vii
DocUMENTATION FEEADACK. ... ttiiiiieeiee ettt s st e e ba e e siteesbeeesnseesnneeans viii

A 1 4o T 3T 1 o T 1
3 R R o U] o o 1] F PP PPPPPPPPPPPPRY 1
1 olo o IO PUPPPTPPN 1
IO T = 1= T =Y PRSP 1

7 X T Lo T o 1 0 2
D N - 1= Lo Y Yo TU IR -1 o USSR 2
P A [ 015 -1 | 1 4 o o F OO OO PO PUPRRTORROPRT 2

T Y I 0 T 4
3.1 AUIOCOAESUA. .. ..ottt ettt e st e et e e s bt e e sbbeesabeesabeeesabeesabaesnbaeesabeesnseenns 5

3,11 Standard MEthOdS. ...t 6
0t 0 0 R (= [ 1) =Y (o] = PP PPPPPPPPPPPPPPPPRE 6
3,112 SetSErVEIrCONFIG ueeeiie ettt 6
3.1.1.3  SETACCOUNT (1) cureieiiiieeeiiiee et e ettt e e e et e e e e st e e e e asa e e e s baeeeeesbeeeeensaeeesnneeaenn 6
00 0 Y =1 ol ole YU | A 07 SRR 7
3.1.1.5  SELISTENEIS cooiiiiiiiiii i 7
0 00 T VoV 1o TSR 7
3.1.1.7  10gIiN (CliCk TO CAII) ceneeieeceeeeeee et e 8
0 00 < o Vo 1 U | PRSI 8
BLLL1L9 Gl et 8
I O 0 O Y Y YT A=Y VT USRI 9
31111 SEEVEII YSEIVEL et e et e e et e et e e e eaae e e e aaaaaan 9
3.1.2  AdVaNCed METhOTS .....couiiiiiiiieieeeee et 10
3.1.2.1  setRegiSterEXtraHEAUEIS ...ccci i 10
3.1.2.2  SetINVItEEXTraHEAENS ....eovieiieieee ettt 10
3.1.2.3  BETUSEIAGENT et 10
N A S U =T Y =4=T o | PP PPPPPUPPPPPPPPRE 11
3.1.2.5 GETREEEXPITES .ottt e 11
3.1.2.6  SEIREGEXPIIES wevviviiiiiiiiiiiiiiititirieetee ettt et et e e e e et e eeeeaeses et e e aeeeaeeeereraeeeeeeeaeeaararaaae 11
3.1.2.7  SETUSESESSIONTIMET .eiiiiiiiiiiiiie ettt e e s nn e e s 12




Contents WebRTC
3.1.2.8  SELOBLEVEL ...eiiieeeeeee e 12
N S - oY== L= SO PP OPPPPPPPPPPPPPPRE 12
3.1.2.10 handleNetWorkChange.......cccuiiiicuiie ettt et e e et e e aae e e e 13
3.1.2.11  GetSESSIONLIST .evviiiiiiiiiiiiiiiiiiiiitit ettt a it aaaraaaaaaaraaae 13
3.1.2.12 List of Sessions [ArrayList<AudiocodesSession>, List of Active
Sessions]disconnectONBrokeNCONNECTION ... ...iieiieeiciiirieee e e errrr e e e 13
3.1.2.13  setContactREWIITe . ....ciiiiiiiiiii i 14
3.1.2.14  SetOaULNTOKEN ..ottt 14
3.1.2.15  SEPUSNTOKEN ..outiiiieieeee ettt ettt ae e 15
3.1.2.16  UPAatePUSHTOKEN.....ciiiiiiieecie et et eae e e saae e e e aae e e enaes 15
3.1.2.17  SendINSTANtIMESSAEE. ...ccuviieeeitiieeeeiieeeeciee e e ettt e e e etee e e st e e e esab e e e eeaaee e e s baeeeeareeeeareas 16
3.1.2.18  SEtAIIOWHEAAET ...ttt 16

3.2 AUIOCOAESSESSION ...eeiiiiieitieiiite sttt ettt ettt e e bt e sab e e b e e sab e e ameeesaneesneeesnneeeneeesanes 17
3.2.1  Standard MEthodS....c..couiiiiiieieeeee et 18
3.2.1.1  etSESSIONID .o 18
3.2.1.2  @NSWET ittt e 18
3.2.1.3  FEJECE ittt e e 18
3.2.1.4  TermiNate ouiiiiiiiiiiiic i 19
3,215 MUEEAUGIO ettt 19
3.2.1.6  MUEEVIEO ..ttt 19
3.2.1.7  ISAUIOMULEA .....oiiiieiiiiieee et 20
3.2.1.8  QSVIdEOMULEA ..ot 20
3.2.1.9  SENADTIMIF .ottt s e sttt 20
3.2.0.10  SENAINTO .ttt e ettt et st re e 21
I o R 11 @ 10 =0 | oV - PP PPPPRN 21
3.2.1.12  NASVIOEO .ttt st b et ettt be b ea 21
I . T = =1 0= | K = SR 22
3.2.1.14  getTermination ....oocuiii it s 22
3.2.1.15  dUFALION ettt e b et re e 22
3.2.1.16  GSLOCAIHONG ... e 22
3.2.1.17  iSREMOTEHON ...t 23
3.2.1.18  SETUSEIDAta . ccciiiiiiiiiee ittt 23
0 O RS T == U =] o D - [P PPPPPPPPPPPPPPPPRE 23
707 X I o Ve o OSSR PRUURSRRSRTI 24
3.2.1.21  SWILCNCAMEBIA ettt ettt ettt s ebe b re e 24
3.2.1.22  SHOWVIAEO (1)eeeureeiiiieieeeiieeiee ettt ettt e et st e e e e st e e eaeesnbeeeaeeenbaeenseeenres 24
3.2.1.23  SNOWVIAEO (2).uuriiiiiiiee ettt ettt e e ettt e e eeaae e e e e teeeeenaee e enneas 25
I 0 A o o 1V T =T TSP 25
3.2.1.25 setLocalRenderPOSitioN ......c.ceeiiiiiiieiiieeiee e 25
3.2.1.26  addSesSiONEVENTLISTENET .....coiiiiieiiiieeieeiecre e 26
3.2.1.27 removeSessiONEVENTLISTENET ....cccviiiiiiiiiiiic 26
O A T (= 1] - | KT PP PP PP PPPPPPPPPPPPPPPRE 26




Contents WebRTC
T8 A B o [ =T o R PR P PRSP PPR PP 27

3.2.1.30  reinViteWIthVIdEO ...ccueeiiieiiieiieee et 27

3.2.1.31 transferCall (blind tranSfer) .......cooveie i e 27

3.2.1.32 transferCall (attended transfer) ... eciii e 28

3.2.1.33  getTransferCONTaCt.....cccciieeeiiie e ettt ettt e e e ettt e e e e e e e s e e e s saeeeennes 28

3.2.1.34  getTransterState ..o i et 29

3.3 WEDRTCAUAIOMANAZEN . .viiiiiiiiieeeiiiee ettt e e ettt e e st e e e e e e e e sbae e e e saabeeeesasbeeeessaeeeesnsbeeeesnnseas 30
3.3. 1 Standard MethOdS. . ...t 30
3,311 BelINSTANCE ceiiiiiiiiiiieiteeeeetee et e e e araaae 30

3.3.1.2  setWebRTCAUdIOROULELISTENET ...c..eeiiiiiiiiieriiieeieese et 30

3.3.1.3  SELAUdIOROULE....eicitieitciierieee ettt et 31

3.3.1.4  GEtAUIOROULE ..eoiiiiiiiietie et 31

3.3.1.5 getAvailableAUdIOROULES ........eiieiiiie et 31

I N @(@e] o} T4 U T =14 o JP PRSP 32
341 Standard MEthodS. ......ooii ittt bbb e e e 32
O S Y- =1 @o T o | ={ U = o [ Y o SR 32

3412 VEISION ottt e 32

0 . Y= =1 Mo ot | Y=Y V=T o 2o o PR 33

3.4.1.4  SEtLOCAISEIVEIPOIT ..c..eiiiiiiieee ettt et 33

I R = =1 1 D 141101 { @] 4 ] [ PR PP 33

3.41.6  SEtDIMIOPTIONS ..eoitiiiiieitie et 33

3.4.1.7  getVideoConfigUuration ........ccceiieciiee e e e e e 34

3.4.1.8  setVideoConfiUration .........ceoiuiiiiieiiieniee et 34

3.4.1.9  setAutomaticCallONREIreCE ...c.eeviriiriiesieeteeeeee et 34

3.4.1.10 getAutomaticCallONREIreCE...c..uiiieieriiieeieereeeee e 35

34,111 SEREAINECT ..eeuvieiiieiiieiteeeeereet ettt e 35

3.4.1.12  getRedir@CtCONTACE. . ecveeritieeeee ettt 35

3.4.1.13 getRedirectENabIed .........coeieeiiieeee e 36

R I VAT (=T T @] o1 =W =Y u o] s [PPSR SR 37
3.5.1 Camera Parameters. ... iiiiiiiiie e 37
3.5.2  Rendering VIEWS ParameersS ......uuiiicuiieeiiiieeeeiiee e siee e et e e este e e saaeeeestaeeessaeaesnneeeennseeennnns 37
3.6 DTIMFOPLIONS oo 38
3.6.1  DTMF Parameters.....coccuiiiiiiiiiiiiiii it 38
3.7 RemMOTECONTACT oo 39
3.7.1  Standard MEthodS. ...c..couiiiiiieeee ettt e 39
3.7.1.1  getDiSPlayNaAMIE .co.eiiiiieiiie ettt 39

3.7.1.2  GETUSEINGIME ootiiiiiiiiiiititetete ettt et et eeeeeeaeseseseeeaeaeeeaessaeaeaeaseesssseeseeeseeeeene 39

0 T~ 1= o o ' - [ o I RPN 39

3.7.1.4  SetDIiSPlayNAMe..cci i e e e e e aa e e an 40

3.7.1.5  SEtUSEINAME c..oviiiiiiiiiiiiici s 40

3.7.0.6  SEIDOMAIN 1ttt e 40

3.8 TermiNatioNINFO...coiuiiiii i 41




Contents WebRTC
3.8.1  TerminationInfo attribULE ....cceeeiie e 41

TR TR 101 o 7 1 1= o PSS 41
3.9.1  INTOAIRIT AtEIDULE .eeineiectie ettt sttt 41

4 API Callbacks/ Listeners INterfaCes ....ccueeeeeueciiirrreeeeennnnsiiesrreeeessssssssessseeeeessssssssssssseesens 43
4.1 AUdiOCOESEVENTLISTENEI .ooueviiiiiiiiee ettt st sttt e st e e e sabeesans 43
4.1.1  Login state ChanGed EVENT ......cccccuiiiiiiiiee ettt e e e et e e et e e e eaaa e e e sraeeean 43

0 A [ o Tolo T o 11 Y < or= | L AV =T o SRS 43

4.1.3  INcomMing IM MESSABE EVENT ...ceiiiiiiiiiiiiiiiit ettt s e s sree e 43

4.1.4 IM Message status BVENT ..o, 44

4.2  AudioCodesSesSiONEVENTLISTENET .....ciiiiiiiieiiiiee e e e e e 45
oy R or- | | K=Y 4 1 0| T 1 (<] SOOI 45

.22 CAIIPIOBIESS ..ttt ettt b e bbbt e bbbt bbb e e bt e b e e bt e anneenee s 45

4.2.3  CAMEIASWILCNE ..o iuiiiiiie ettt et e b e et e bbb e e nee s 45

4.2.4  reinviteWithvideoCallbDack .......oc.veeuiiiiiiie s 46

R 4T Te [ =Y 11 1T USSR 46

4.2.6  iNCOMING NOTITY 1eeeiiiiie it e e st e e e e e e s tae e e e steeeennaaaeesnnaeeean 46

4.3 WebRTCAUAIOROULELISTENET . uviiiiiiiiie ettt et e et e e s sateee s eneeas 47
4.3.1  QUdIOROULESCRANGEM .....eeiiiiiee ettt e e et e e e e e e s tae e e e stae e enaaaeesnnaeeean 47

4.3.2  currentAUdiOROULECHANEGEM ...ooviiiiiiiiiee e e 47

I VLY e T ] o] [T PN 48
5.1 User Agent: Create Instance, Set Server and ACCOUNt ......uuvveeieeiiiiiiiiiiee e e 48
5.2 User Agent: Set Listeners (Callbacks) ........eeeiuiiieiiiiiie e 48
5.3  User Agent login: Connection to SBC Server and LOZIN ..........ccoovviiiiiiieeeeeeiiiiiirieeeee e 48
5.4 IMAKE @ Call e ettt e e s e e e e e s nreas 48
5.5  Send DTMF DUFING @ CaAll..eoiiiiiiiieeiee ettt et e e e e e e are e e e e areas 48
5.6  Send SIP Message DUring @ Call..........uiiiiiii it e e e e e r e e e e e e anaes 48
5.7  Mute /Unmute DUMNG @ Call .ooueiiiiieeiee ettt ettt et et 48
5.8  Accept Incoming Call (With VIdEO0) .......c.uieeiiiiiiiieiiee et 49
5.9  RejJect INCOMING Callccc.neeeiiiiiieee e e e e e e et e e e e e e e ntereeeeeeeeeennnnns 49
5.10 Terminate @ Callicuuec i cie ettt sttt st e st e e sab e e saae e e bt eesabeeeaeeenanes 49
LT R U E o) AV T =Y o PRSP 49




Notices

WebRTC

Notice

Information contained in this document is believed to be accurate and reliable at the time of
printing. However, due to ongoing product improvements and revisions, AudioCodes cannot

errors or omissions. Updates to this document can be downloaded from
https://www.audiocodes.com/library/technical-documents.

This document is subject to change without notice.

Date Published: August-27-2025

guarantee accuracy of printed material after the Date Published nor can it accept responsibility for

Security Vulnerabilities

All security vulnerabilities should be reported to vulnerability@audiocodes.com.

WEEE EU Directive

Pursuant to the WEEE EU Directive, electronic and electrical waste must not be disposed of with

unsorted waste. Please contact your local recycling authority for disposal of this product.

Customer Support

Customer technical support and services are provided by AudioCodes or by an authorized

AudioCodes Service Partner. For more information on how to buy technical support for
AudioCodes products and for contact information, please visit our Website
https://www.audiocodes.com/services-support/maintenance-and-support.

Stay in the Loop with AudioCodes

Vs " TN s .,\\' ,f'. -Irnuﬂ\-, P

| 1 I ) F - ¥ '\.I
[ o) | T | )
N/ ff S \h/’ \a/

Abbreviations and Terminology

Each abbreviation, unless widely used, is spelled out in full when first used.

Related Documentation

Document Name

https://www.audiocodes.com/solutions-products/solutions/enterprise-voice/webrtc-connectivity

WebRTC Client SDK API Reference Guide
WebRTC Click-to-Call Widget Installation and Configuration Guide

-Vi-


https://www.audiocodes.com/library/technical-documents
mailto:vulnerability@audiocodes.com
https://www.audiocodes.com/services-support/maintenance-and-support
https://www.audiocodes.com/solutions-products/solutions/enterprise-voice/webrtc-connectivity
http://www.twitter.com/audiocodes
http://www.facebook.com/audiocodes
http://www.linkedin.com/companies/audiocodes
http://www.youtube.com/user/audioserge
http://blog.audiocodes.com/

Notices

WebRTC

Document Revision Record

LTRT
14060
14061
14062

14063

14064

14065

14066

14067

14068

14069

14070

Description

Initial document release for Version 1.0

Added functionality for SDK Version 1.0.1

Updated to software Version 1.0.6
Update for new function “setContactRewrite”
Updated to software Version 1.1.0.
Blind transfer:
e New function - transferCall(RemoteContact transferTo)
e New function - getTransferContact
e New function - getTransferState
Attended transfer - New function - transferCall(AudioCodesSession transferToSession)
OAuth authorization - New function setOauthToken
64 bit support (arm64-v8a)
IPv6 support
Click to call support (calls without registration) - Added new function - login(Context,
Boolean autologin)
Push support:
e New function - setPushToken
e New function - updatePushToken
Support for Google WebRTC SDK 1.0.26885
Support for delayed offer
Updated software to Version 1.1.2
Support for SIP IM Messaging
Updated software to Version 1.1.5
Support for Android API Level 29
Support for AndroidX
Support for continuing call on broken connection
Updated software to Version 1.1.13
Added TerminationInfo parameter in callTerminated callback in
AudioCodesEventListener
Added mediaFailed callback in AudiocodesSessionEventListener

Support for verify server over TLS
Updated software to Version 1.1.16

Added InfoAlert parameter in incomingCall callback in AudiocodesSessionEventListener
Added incomingNotify callback in AudioCodesSessionEventListener

Added support for Android tablet devices

Updated software to Version 1.2.1
Updated SIP stack to pjsip2.10
Support for Android API Level 31
Updated software to Version 1.2.2
Added SIP message support

- Vii -



Notices WebRTC

LTRT Description

14071 m  Updated software to Version 2.0.1

m  Updated SIP stack to PJSIP 2.13

m  Updated WebRTC library to M123 (branch 6312)
m Updated OpenSSLto 3.2.0

m Updated setAccount description

® Added permission description

[
[

Updated software to Version 2.1.0

14072
Support for Android 15
e SDKversion 35
e Gradle version 8.7.3
e Kotlin version 1.9.0
e Android 16KB memory page is NOT supported in 2.1.0
m Support for Android emulator
e x86_64 libraries added
e abiFilters are set to 'arm64-v8a', 'armeabi-v7a’, 'x86_64" — x86_64 is optional and
can be removed from the application build gradle file
e The Android SDK size has increased significantly because of these added files, but
the x86_64 can be excluded from the actual build by using abiFilters.
m Updated server verification process
e Support for Android CA Keystore
e Support for custom certificate list (supplied as object)
e See setVerifyServer(boolean verifyServer, boolean useAndroidKeystore,
X509Certificate[] customCertificatelList)
m  Fix for armeabi-v7a support
m Call handover fix
14073 m  Support for 16KB memory page size

e Upgraded to OpenSSL 3.4.2
e Upgraded WebRTC to M136 (branch 7103)
e Upgraded to Android NDK 28c
e Upgraded to Android SDK 35
m  Support for Android SDK obfuscation — when obfuscation is enabled in the application
that uses the SDK, the SDK uses its own set of obfuscation rules.

Documentation Feedback

AudioCodes continually strives to produce high quality documentation. If you have any comments
(suggestions or errors) regarding this document, please fill out the Documentation Feedback form
on our Website at https://online.audiocodes.com/documentation-feedback.

- Viii -


https://online.audiocodes.com/documentation-feedback

1. Introduction WebRTC

Introduction

WebRTC technology enriches user experience by adding voice, video and data communication to the
browser, as well as to mobile applications. AudioCodes WebRTC gateway provides seamless
connectivity between WebRTC clients and existing VolP deployments.

A typical WebRTC solution is comprised of a WebRTC Gateway, which is an integrated functionality
on AudioCodes SBCs, and a client application running on a browser or a mobile app. AudioCodes
WebRTC Android client SDK is a Java code-based API that allows Android developers to integrate
WebRTC functionality into Android applications for placing calls from the Android device to the SBC.

ﬂudiGCdes Client SDK

/f \-\.
s 4
D =

1.1

1.2

1.3

Customer Data Center

phone
Enterprise YolF

Flain ZIF I etwnrk

SIF o WebSocket

OFUS o ZRTP B Flain RTF

S8C with WebRTC Gateway

For a simple click-to-call button use case, a WebRTC widget is offered which can be easily
integrated into websites and blogs without any JavaScript knowhow. See the WebRTC
Widget Installation and Configuration Guide.

Purpose

This Reference Guide defines the Application Programming Interface (API) use of the Web Real-Time
Communications (RTC) SDK.

Scope

The guide describes the APl that must be implemented to use AudioCodes' WebRTC Android SDK to
build an Android application that will interact with AudioCodes' server to establish voice and video
calls.

The guide may be used by Android developers who want to use the AudioCodes-provided SDK to
build Web RTC clients.

Benefits

Here's a summary of the benefits:

Simple deployment - a single WebRTC gateway device for both signaling and media
Strong security and interoperability capabilities resulting from integration with SBC
Client SDK for Android application.

OPUS powered IP phones for superb, transcoder-less voice quality

Optional recording of WebRTC calls




2. Android SDK WebRTC

2.1

2.2

Android SDK

The sections below describe how to install the Android SDK.

Before you Start

@ This document has references to the Democlient (which includes code examples),
accompanying this documentation.

Here's what you require before you start using the Android SDK:

®  Android Studio (tested with Android Studio 3.1)
B  Android device with minimum OS 6.0
B Provided with the SDK:

° WebRTC SDK AAR File: This is the WebRTC SDK AAR file. The file must be included in a
project to use the SDK.

e  Android Demo Client Project: This is the Android Studio project that can be opened
from the Android Studio. This is a fully working client and shows how to use the SDK and
the AAR file.

e Javadocs: Located in the Android demo client. These are javadocs that can be used as a
reference to the WebRTC SDK.

Installation

Here's what you need to do to install the SDK.

To install the SDK:
1. Install Android Studio.

2.  Open a project for the demo client.

Follow the instructions from the Android Studio (necessary Android SDK files will need to be
downloaded and installed.)

4. The WebRTC SDK is currently required to add the following lines to the application
build.gradle files (see Demo client):

ndk {
abiFilters 'armeabi-v7a', 'arm64-v8a'

}

5. The SDK needs specific Android permissions. The SDK does not check if these permissions are
present for the Android application. Any Android application that uses the SDK needs to make
sure the permission has been requested and provided by the user. The demo client provides
examples on how to do this.




2. Android SDK

WebRTC

6.  Permission description:

Required permissions:

Internet permission:

<uses-permission android:name="android.permission.INTERNET" />

Microphone permission:

<uses-permission android:name="android.permission.RECORD_AUDIO" />
Permission to route audio to speaker/headset/Bluetooth
<uses permission android:name="android.permission.MODIFY_AUDIO_SETTINGS" />
Used for audio routing from speaker/headset/bluetooth

<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.BLUETOOTH_CONNECT" />

Recommended permissions:

Handling of incoming GSM calls (prevent simultaneous voip and gsm calls)
<uses-permission android:name="android.permission.READ_PHONE_STATE" />

Is used to access WifiManager and receive events of connection/disconnection, which
allows calls to be transferred from Wifi to Cellular (and vice versa)

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
Same as 2, but allows access to ConnectivityManager to get events for network changes
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

To keep the phone awake during calls (the call will be dropped if the device goes to
sleep)

<uses-permission android:name="android.permission. WAKE_LOCK" />

For incoming call vibrate

<uses-permission android:name="android.permission.VIBRATE" />

To be used if custom certificates (PEM files) are to be used

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
Not required but older devices might still require this:

<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />




3. API Classes

WebRTC

3 API Classes

The API consists of:

Main Classes
e  AudioCodesUA — AudioCodes User Agent (Singleton) — see Section 3.1
e  AudioCodesSession — For call representation (/nterface) — see Section 3.1.1

° WebRTCAudioManager — Class for managing audio routes — see Section 3.3
TerminationInfo — Cass for information about Call Termination — see Section 3.8

Helper Classes

e  ACConfiguration — (Optional) class for general configuration options — see Section 3.4
e  VideoConfiguration — (Optional) class for video configuration — see Section 3.5

° DTMFOptions — Class for settings DTMF options — see Section 3.6

° RemoteContact — Class representing the remote contact — see Section 3.7

Listener Interfaces

° AudioCodesEventListener — Event listener for incoming calls and login state changes —
see Section 4.1

° AudioCodesSessionEventListener — Event listener for call related events — see Section 4.2

° WebRTCAudioRoutelListener — Event listener for audio route events — see Section 4.3




3. API Classes WebRTC

3.1

AudioCodesUA

Used to initialize the framework before starting to make and receive calls. Mostly used to initialize
the Web RTC engine and register to the service.

Class AudioCodesUA({
AudioCodesUA getInstance() ;
void setServerConfig(String proxyAddress, int port, String
domain, Transport, List<PeerConnection.IceServer>
iceServerlist) ;
void setAccount (String userName, String displayName, String
password) ;
void setAccount (String userName, String displayName, String
password, String authName) ;
voild setListeners (AudioCodesEventlListener listener);
void login (Context context);
void login (Context, Boolean autolLogin);
void logout() ;
AudioCodesSession call (RemoteContact call to, Boolean
withVideo, Hashtable<String, String> inviEeHeaders);
void setRegisterExtraHeaders (Hashtable<String, String>
headers) ;
void setInviteExtraHeaders (Hashtable<String, String> headers) ;
String getUserAgent() ;
void setUserAgent (String userAgent) ;
int getRegExpires () ;
void setRegExpires (int registerExpires);
void setUseSessionTimer (Boolean use);
void setLogLevel (LogLevel level);
void setLogger (ILog log) ;
void handleNetworkChange () ;
ArrayList<AudioCodesSession> getSessionlist() ;
void setContactRewrite (Boolean enable) ;
void setOauthToken (String accessToken) ;

void setPushToken (Context context, String registrationToken, String
projectID)

void updatePushToken (Context context, String registrationToken)
long sendInstantMessage (RemoteContact contact, String
message) ;

void disconnectOnBrokenConnection (Boolean disconnect) ;

}

void setVerifyServer (Boolean verifyServer);

void setVerifyServer (Boolean verifyServer, Boolean
useAndroidKeystore, X509Certificate[] customCertificatelist);

void setAllowHeader (String[] events);




3. API Classes WebRTC

3.1.1

3.1.1.1

3.1.1.2

3.1.1.3

Standard Methods

getinstance

Returns the singleton object instance of class AudioCodesUA.

setServerConfig

Configures the server.

Parameters

m  proxyAddress [String, address of server]

B port [int, port of the proxy server address

®  serverDomain [String, domain name to register to]

B transport [Transport, transport for connection to the server — UDP/TCP/TLS]

m  iceServerlist [List<PeerConnection.lceServer>, list of STUN and TURN servers — null value may

be supplied]

Return Values

N/A

setAccount (1)

Defines the account details. For this method, the authorization name is the same as the username.

Parameters

®  userName [String, authenticating user name]

m  displayName [String, display name for the userpassword [String, authenticating user
password]

Return Values

N/A




3. API Classes WebRTC

3.1.1.4 setAccount (2)

Defines the account details. This is the same as setAccount (1) but with the option of having a
different authorization name.

Parameters

®  userName [String, user name]

m  displayName [String, display name for the user]
B password [String, authenticating user password]
B authName [String, authorization user name]

Return Values

N/A

3.1.1.5 setlisteners

Defines the listener’s object.

Parameters

listener [AudioCodesEventListener, instance implementation of the AudioCodesEventListener
interface that holds the methods to be triggered; see Section 4.1 for details on how it is defined;
see also Section 5.2 for an example] API Callbacks/ Listeners Interfaces User Agent: Set

Return Values

N/A

3.1.1.6 login

Performs registration to the service.

Parameters

context [Context, Android application context]

Return Values

N/A




3. API Classes

WebRTC

3.1.1.7

3.1.1.8

3.1.1.9

login (click to call)

Performs initialization to the service. The SDK will not register to the service but will allow outgoing

calls to be made.

Parameters

B context [Context, Android application context]

®  Autologin (Boolean):

e  true: The SDK registers to the service (same as login 3.1.1.6)

e false: The SDK does not register to the service, but calls can be made (click to call

feature)

Return Values

N/A

logout

Performs de-registration from the service.

Parameters

N/A

Return Values

N/A

call

Initiates an outgoing call.

Parameters

m  call_to [RemoteContact, destination address/number]

m  withVideo [Boolean, 'true' if the call is initiated with video]

®  inviteHeaders [Hashtable<String, String>, list of headers with a key/value where each key is

added as a header to the SIP INVITE with the specified value]

Return Values

®  session [AudioCodesSession, a call session object defined here.]




3. API Classes WebRTC

3.1.1.10

3.1.1.11

setVerifyServer

Enables/disables the certificate verification when establishing a TLS connection; the default state is
disabled. This method is the same as calling setVerifyServer(true,true,null). For example, see Section
3.1.1.11. By default, Android CA Keystore is used.

Parameters

verifyServer [Boolean, 'true' to enable verification]

Return Values

N/A

setVerifyServer

Method for setting server certificate verification. The SDK allows for custom certificates to be added
to the verification process. This method allows for a custom certificate list to be provided, where the
customer can choose how to store the certificates. E.g. the certificate can be stored encrypted in the
app and be provided decrypted as an object list to the SDK.

If verifyServer is set to false — no server certificate will be verified

If Android CA Keystore is set to true — the Android CA Keystore certificates will be added to the
custom keystore that will be used to verify the server certificate

If a X509Certificate list is provided — this list will be added to the custom keystore that will be used
to verify the server certificate

If a path for certificates is provided through setCaCertFilePath - — this list will be added to the custom
keystore that will be used to verify the server certificate

The final custom keystore used for verification will contain:

List of Android CA Keystore certificates (if useAndroidKeystore is true) + X509Certificate list (if
provided) + caCertFilPath certificates (if provided).

If none is provided and verifyServer is set to true, the verification process will fail.

The custom keystore will be used for verification by Android Trustmanagers.

Parameters
verifyServer [Boolean, 'true' to enable verification]
useAndroidKeyStore [Boolean, ‘true’ to enable verification with Android Keystore certificates

X509Certificate[] [X509Certificate list, a list with custom added certificates to be used for certificate
verification. This list may be null, contain a single certificate, or multiple certificate (to build the
certificate chain).

Return Values

N/A




3. API Classes WebRTC

3.1.2

3.1.2.1

3.1.2.2

3.1.2.3

Advanced Methods

The advanced methods are optional. They provide an extra level of flexibility to the API, which is
based on SIP (Session Initiation Protocol). Developers who are familiar with SIP can make use of the
advanced methods.

setRegisterExtraHeaders

Allows adding additional headers to the registration request.

‘ ® The headers must be SIP headers that conform to RFC 3261.

Parameters

headers [Hashtable<String, String>, list of headers with a key/value where each key is added as a
header to the registration request with the specified value]

Return Values

N/A

setinviteExtraHeaders

Allows adding additional headers to the INVITE request or response.

‘ ® The headers must be SIP headers that conform to RFC 3261.

Parameters

headers [Hashtable<String, String>, list of headers with a key/value where each key is added as a
header to the SIP INVITE with the specified value]

Return Values

N/A

getUserAgent

Gets the current user-agent string, used to build the SIP header User-Agent.

Parameters

N/A

Return Values

User agent [String, text describing the SIP user agent]

-10-



3. API Classes

WebRTC

3.1.24

3.1.25

3.1.2.6

setUserAgent

Sets the user-agent string, used to build the SIP header User-Agent.

Parameters

User agent [String, text describing the SIP User Agent]

Return Values

N/A

getRegExpires

Gets the current default registration interval.

Parameters

N/A

Return Values

expires [integer, seconds]

setRegExpires

Changes the default registration interval from the default value (600).

Parameters

expires [integer, seconds]

Return Values

N/A

-11 -



3. API Classes WebRTC

3.1.2.7

3.1.2.8

3.1.2.9

setUseSessionTimer

Allows enabling session timers in the call session.

Parameters

B UseSessionTimer (Boolean):

e  true: Session timers are optionally supported. [e.g., the SBC initiates session timers if
configured to do so (default value)

° false: The session timers are not enabled

Return Values

N/A

setLoglLevel

Changes the log level used by the application. Release builds might want to set the log level higher
for security reasons. WebRTC internal logs are only enabled if the debug level is lower than or equal
to DEBUG level.

Parameters

logLevel [LogLevel, log level enum]

Return Values

N/A

setLogger

Changes the logger used by the SDK. Logs for the WebRTC SDK and logs for PjSIP are written to the
custom logger. WebRTC internal logs are still be written to the console (if the log level is lower than
debug)

Parameters

logger [ILog, instance object of the ILog interface]

Return Values

N/A

-12 -



3. API Classes WebRTC

3.1.2.10

3.1.2.11

3.1.2.12

handleNetworkChange

Handles network changes when called. This re-registers the client and reestablishes the audio
sessions when the network has been changed.

It must be explicitly called by the client application. The SDK does not automatically detect a network
change. Ideally, this must be called when the network is reconnected, not when disconnected.

Parameters

= N/A

Return Values

N/A

getSessionlList

Gets the current session list.

Parameters

= N/A

Return Values

List of Sessions [ArrayList<AudiocodesSession>, List of Active
Sessions]disconnectOnBrokenConnection

This method changes the way call handover is being handled by the SDK. Default behavior is to
disconnect a call when there is no RTP for a period of time. This method (when set to 'false') allows
for the call to continue even when the connection is broken.

Parameters

®  DisconnectOnBrokenConnection(Boolean):

° true: Calls are terminated when a network connection error occurs in the audio stream
(default value)

° false: Calls continue when a network connection error occurs

Note: Setting this to 'false' forces enable contact rewrite.

Return Values

N/A

-13-



3. API Classes WebRTC

3.1.2.13

3.1.2.14

setContactRewrite

This option is used to update the transport address and the Contact header of REGISTER request.
When this option is enabled, the SDK keeps track of the public IP address from the response of the
REGISTER request. Once it detects that the transport address has changed, it will unregister the
current Contact, update the Contact with the transport address learned from the Via header, and
register a new Contact to the registrar. It will also update the public name of the UDP transport if
STUN (Session Traversal Utilities for NAT) is configured.

Parameters
®  ContactRewrite(Boolean):

e  true: The library tracks the public IP address from the response of the REGISTER request

e false: The library does not track the public IP address from the response of the REGISTER
request. (Default value)

Return Values

N/A

setOauthToken

Optional method to allow the SDK to use Oauth authentication for registration to the service. The
SDK will add an authorization header with the supplied access token. (The SBC will need to be
configured to use Oauth authorization as well.)

Parameters

accessToken [String]— access token as received from the Oauth server (refer to the Democlient for
an example on Oauth registration)

Return Values

N/A

-14 -



3. API Classes WebRTC

3.1.2.15

3.1.2.16

setPushToken

Optional method to allow the SDK to use push for incoming calls. If set than the SDK will send the
push credentials to the SBC which will allow the SBC to send push messages for incoming calls.
Refer to the Democlient for an example.

This method sets the push parameters for the PNS according to:
Push Notification with the Session Initiation Protocol (SIP) see: https://www.ietf.org/id/draft- ietf-
sipcore-sip-push-20.txt

The values are stored in permanent memory and will be used by the WebRTC SDK until the values
are reset to null values. It is recommend to call upon this method before calling upon login as calling
upon this method after will cause a re-register of the SIP stack.

Parameters
B context [Context, Android application context]
m  registrationToken [String, Google push registration token]

B projectlD [String, Google project ID]

Return Values

N/A

updatePushToken

This method should be called if the client's registration token has been changed. Refer to the
Democlient for an example.

This method is the same as setPushToken except the projectlD that is emitted. This method uses the
projectID as set in setPushToken. Therefore, setPushToken must have been called once before.

Parameters

®  context [Context, Android application context]

®  registrationToken [String, Google push registration token]

Return Values

N/A

-15-


https://www.ietf.org/id/draft-

3. API Classes WebRTC

3.1.2.17

3.1.2.18

sendinstantMessage

This method sends a message to the remote contact. This is done according to RFC 3428 - Session
Initiation Protocol (SIP) Extension for Instant Messaging. The status of the message will be returned
in AudioCodesEventListener (see oninstantMessageStatus).

Parameters

®  contact [RemoteContact, destination address/number]

B message [String, message that will be sent to the remote contact]

Return Values

B message ID [long, ID for the message, this message ID will be used in the callback for the
message status]

setAllowHeader

Sets/adds a new allow header to the SDP in case of 180 ringing message

Parameters

User agent [String[], comma separated value for the header]

Return Values

N/A

-16 -



3. API Classes WebRTC

3.2 AudioCodesSession

Represents a call session. Used in two scenarios:

B When initiating a call via the AudioCodesUA

B When receiving a callback of an incoming call

Syntax

class AudioCodesSession {
int getSessionID() ;

void answer (Hashtable<String, String> inviteHeaders, Boolean
withVideo) ;

void reject (Hashtable<String, String> inviteHeaders);
void terminate();

vold muteAudio (Boolean mute) ;
void muteVideo (Boolean mute) ;
boolean isAudioMuted() ;

boolean isVideoMuted() ;

void sendDTMF (DTMF dtmf) ;

void sendInfo(String info);
Boolean isOutgoing() ;

Boolean hasVideo() ;
RemoteContact getRemoteNumber () ;
CallState getCallState();

int duration|() ;

long getCallStartTime() ;
CallTermination getTermination() ;
Boolean isLocalHold() ;

Boolean isRemoteHold() ;

Object getUserData() ;

void setUSerData (Object object);
vold hold (Boolean hold) ;

void switchCamera () ;

void showVideo (Activity);

void showVideo (SurfaceViewRenderer localView,
SurfaceViewRenderer remoteView) ;

void stopVideo() ;
void setLocalRenderPosition (int xPercentage, int yPercentage);

voilid addSessionEventListener (AudioCodesSessionEventListener
sessionEventListener) ;

voild removeSessionEventListener (AudioCodesSessionEventlListener
sessionEventlListener) ;

ACCallStatistics getStats();

void redirect (RemoteContact contact, Hashtable<String,String>
inviteHeaders) ;

void reinviteWithVideo () ;

Boolean transferCall (RemoteContact transferTo);

Boolean transferCall (AudioCodesSession transferToSession);
RemoteContact getTransferContact();

CallTransferState getTransferState();

}

-17 -



3. API Classes WebRTC

3.2.1

3.2.1.1

3.2.1.2

3.2.1.3

Standard Methods

getSessionlD

Retrieves the internal identifier for the session. This identifier can be used in case there is more than
one session.

Parameters

N/A

Return Values

sessionlD [int, ID of the session]

answer

Initiates the object and establishes the call. Only valid for incoming calls.

Parameters

m  headers [Hashtable<String, String>, list of headers with a key/value where each key is added
as a header to the SIP response with the specified value]

®  AnswerWithVideo (Boolean):
° true: The call is answered with video and video is unmuted. Both sides see each other

° false: The call is answered with video, but video muted. This side will see the remote
video, but the remote side cannot see the local side video

Return Values

N/A

reject

Rejects a call. Only valid for incoming calls.

Parameters

headers [Hashtable<String, String>, list of headers with a key/value where each key iadded as a
header to the SIP response with the specified value]

Return Values

N/A

-18 -



3. API Classes

WebRTC

3.2.14

3.2.15

3.2.1.6

Terminate

Terminates an active call. Only valid for outgoing and established calls.

Parameters

N/A

Return Values

N/A

muteAudio

Defines the status of the audio mute (on/off).

Parameters

®  MuteAudio (Boolean):
° true: To mute audio

° false: To unmute audio

Return Values

N/A

muteVideo

Defines the status of the video mute (on/off).

Parameters

®  MuteVideo (Boolean):
° true: To mute video

° false: To unmute video

Return Values

N/A

-19-



3. API Classes

WebRTC

3.2.1.7

3.2.1.8

3.2.1.9

isAudioMuted

Checks audio mute status.

Parameters

N/A

Return Values

B IsAudioMuted (Boolean):
° true: If muted
° false: If not

isVideoMuted

Checks video mute status.

Parameters

N/A

Return Values

®  IsVideoMuted(Boolean):
e  true: If muted

° false: If not

sendDTMF

Sends a DTMF character

Parameters

m  dtmf [DTMF, an enum containing a DTMF character]

Return Values

N/A

-20-



3. API Classes

WebRTC

3.2.1.10

3.2.1.11

3.2.1.12

sendInfo

Sends a SIP info message

Parameters

B info [String, message in JSON format]

Return Values

N/A

isOutgoing

Checks if a call is outgoing.

Parameters

N/A

Return Values

®  IsCallOutgoing (Boolean):
e true: If outgoing

o false: If incoming

hasVideo

Checks if a call has video.

Parameters

N/A

Return Values

B IsCallWithVideo (Boolean):
° true: If the call has video

e false: If the call is audio only

-21 -



3. API Classes WebRTC

3.2.1.13

3.2.1.14

3.2.1.15

3.2.1.16

getCallState

Gets the call state of the session.

Parameters

N/A

Return Values

B callstate [CallState, enum containing the call state]

getTermination

Gets the termination reason of the session.

Parameters

N/A

Return Values

B termination [CallTermination, enum containing the termination reason]

duration

Defines the call duration, in seconds. It will be -1 if the call has still not been established.

Parameters

N/A

Return Values

®  duration [int, call duration in seconds, -1 if the call is not yet established]

isLocalHold

Checks if this side of the call has put the call on hold.

Parameters

N/A

Return Values
m  isCallLocallyOnHold (Boolean):

° true: If call is on local hold

° false: if otherwise

-22 -



3. API Classes WebRTC

3.2.1.17

3.2.1.18

3.2.1.19

isRemoteHold

Checks if the remote side of the call has put the call on hold.

Parameters

N/A

Return Values

B IsCallRemotelyOnHold (Boolean):
° true: If the call is on local hold

° false: If otherwise

setUserData

Allows the optional setting of a user-created object / data to be attached to a specific session. The
reference is removed from the session after the session has been terminated.

Parameters

userData [Object, Java object for option user data]

Return Values

N/A

getUserData

Allows the optional retrieval of a user-created object / data which was attached to a certain session.

Parameters

N/A

Return Values

B userData [Object, Java object for option user data]

-23-



3. API Classes WebRTC

3.2.1.20

3.2.1.21

3.2.1.22

hold

Set call on hold (or un-hold). The callProgress callback in.AudioCodesSessionEventListener indicates
when the call has been placed on hold/unhold.

Parameters

Hold [Boolean, set call to hold]

Return Values

N/A

switchCamera

Switches the camera between front and back camera. This method requires the device to have two
cameras. A successful camera switch is returned in the cameraSwitched -callback in
AudioCodesSessionEventListener.

Parameters

N/A

Return Values

N/A

showVideo (1)

Displays video during a call. This requires the Ul element ac_webrtc_video to be included in the
layout of the activity. This is the recommended method to be used when using video.
For a more advanced and customized option, see showVideo(2) in the section below.

Parameters

Activity [Activity, Android activity that is used to display the video. This activity must contain the
ac_webrtc_video Ul element in its content view.

Return Values

N/A

-24 -



3. API Classes WebRTC

3.2.1.23

3.2.1.24

3.2.1.25

showVideo (2)

Displays video during a call. This does not require the Ul element ac_webrtc_video to be included in
the layout of the activity. The method is mutually exclusive to showVideo (1).

Parameters

[ | localView [SurfaceViewRender, Android SurfaceViewRenderer Ul element; this element is
used to show the local stream.

B remoteView [SurfaceViewRender, Android SurfaceViewRenderer Ul element; this element is
used to show the remote stream.

Return Values

N/A

stopVideo

Stops the capturing of video and removes the remote and local renderer. To start video again,
showVideo needs to be called.

Parameters

N/A

Return Values

N/A

setLocalRenderPosition

Sets the local render position. Only relevant if showVideo(l) method is used.
This method should be called before showVideo.

Parameters

m  xPercentage [int, the horizontal position of the top left side of the local render view. This is
set as a percentage of the ac_webrtc_video screen. E.g., if the local render view has a width of
1000 pixels. Setting this item to 66 will place the top left side of the local render view at pixel
660 of the x-axis]

®  yPercentage [int, the vertical position of the top left side of the local render view. This is set
as a percentage of the ac_webrtc_video screen. For example, if the local render view has a
height of 1500 pixels. Setting this item to 66 will place the top left side of the local render
view at pixel 1000 of the y-axis]

Return Values

N/A

-25-



3. API Classes WebRTC

3.2.1.26

3.2.1.27

3.2.1.28

addSessionEventListener

Adds an event listener to listen for session events. The client application might add multiple listeners.
The listeners will receive events until they are other removed or the session was terminated.

Parameters

sessionEventListener[AudioCodesSessionEventListener, implementation object of the
AudioCodesSessionEventListener interface]

Return Values

N/A

removeSessionEventListener

Removes a sessionEventListener that was previously added in the addSessionEventListener method.

Parameters

sessionEventListener[AudioCodesSessionEventListener, implementation object of the
AudioCodesSessionEventListener interface]

Return Values

N/A

getStats

Retrieves statistics on the entire call session.

Parameters

= N/A

Return Values

ACCallStatistics[ACCallStatistics, object containing the call statistics]

-26-



3. API Classes WebRTC

3.2.1.29

3.2.1.30

3.2.1.31

redirect

Redirects an incoming call to a new number. Indicates to the calling party that the caller should try
to call the number specified in RemoteContact (see also under here).

Parameters

B contact [RemoteContact, redirect destination address/number]

®  inviteHeaders [Hashtable<String, String>, list of headers with a key/value where each key is
added as a header to the SIP INVITE with the specified value]

Return Values

m  session [AudioCodesSession, a call session object defined here]

reinviteWithVideo

Enables video during a call. Sends a REINVITE with video enabled. Note that showVideo will need to
be called (see code example delivered with the SDK).

Parameters

N/A

Return Values

N/A

transferCall (blind transfer)

Transfers the other side of the current AudioCodesSession to the remote contact supplied.

This is a blind transfer and should be used when there is only one session. Refer to the Democlient
for an example.

Parameters

contact [RemoteContact, transfer destination address/number. Remote Contact to which the other
side of the current call will be transferred to].

Return Values
TransferCall (Boolean):

° true: If the current call is in connected state

e false: In any other case

-27 -



3. API Classes WebRTC

3.2.1.32 transferCall (attended transfer)

Transfers the other side of the current AudioCodesSession to the AudioCodesSession supplied. This
is a attended transfer and should be used when there is more than one session. Refer to the
Democlient for an example.

Parameters

transferToSession [AudioCodesSession - Transfers the destination call AudioCodesSession to which
the other side of the current call will be transferred to. For example, the other side of the current
AudioCodesSession will try to replace this call with a call to the number of the supplied
AudioCodesSession.]

Return Values

m  TransferCall (Boolean):

e  true: If the current call (AudioCodesSession) is on hold or connected and the supplied
call (AudioCodesSession) is on hold

e false: In any other case

3.2.1.33 getTransferContact

Gets the contact to which the call is being transferred to. After a successful transfer the transfer
contact becomes the remote contact (see getRemoteContact).

Parameters

B NA

Return Values

m  Transfer contact [RemoteContact, the transfer contact. This can be the contact to which the
other side of the current call is being transferred to, or the remote contact to which this call is
being transferred to.]

-28-



3. API Classes

WebRTC

3.2.1.34 getTransferState

Gets the state of the transfer. This method is only applicable for calls that are in the process of
transfer or being transferred. See getCallState to know when an AudioCodesSession is in the state
of transfer.

Parameters

N/A

Return Values

Transfer state [CallTransferState, the state of the transfer for this AudioCodesSession. Possible

states:

B NONE: No transfer in progress.

B TRANSFER_REQUEST_RECEIVED_IN_PROGRESS: The other side has sent a transfer request,
getTransferContact which returns the contact to whom this call is being transferred to.

®  TRANSFER_REQUEST_RECEIVED_FAILED: The other side has sent a transfer request, but the
transfer did not succeed.

®  TRANSFER_REQUEST_RECEIVED_SUCCEEDED: The other side has sent a transfer request, and
the transfer succeeded.

®m  TRANSFER_REQUEST_SEND_IN_PROGRESS: This side has sent a transfer request which is
being processed. getTransferContact returns the contact to whom the other side of this call is
being transferred to.

®  TRANSFER_REQUEST_SEND_FAILED: This side has sent a transfer request which has failed.

B TRANSFER_REQUEST_SEND_SUCCEEDED: This side has sent a transfer request which has
succeeded.

®  TRANSFER_REPLACED: This AudioCodesSession is in a call with a remote party and the

remote party has been replaced (side C in an attended transfer). getRemoteContact returns
the new number to where the call has been transferred to.

-29-



3. API Classes WebRTC

3.3

33.1

3.3.1.1

3.3.1.2

WebRTCAudioManager

This defines WebRTC SDK Audio management. This class handles audio routing during WebRTC calls.

Syntax

class AudioCodesSession {
WebRTCAudioManager getInstance () ;

void setWebRTCAudioRoutelistener (WebRTCAudioRoutelListener
listener) ;

void setAudioRoute (AudioRoute route) ;
AudioRoute getAudioRoute () ;
List<AudioRoute> getAvailableAudioRoutes () ;
}

Standard Methods

getinstance

Gets the singleton instance of the WebRTCAudioManager class.

Parameters

N/A

Return Values

®  instance [WebRTCAudioManager, singleton object instance]

setWebRTCAudioRoutelListener

Sets a listener for listening to updates in the current audio route and available audio routes.

There must always be only one listener; setting a new listener will overwrite the previous listener.

Parameters

listener [WebRTCAudioRoutelListener, implementation instance of the WebRTCAudioRouteListener
interface]

Return Values

= N/A

-30-



3. API Classes WebRTC

3.3.1.3

33.14

3.3.15

setAudioRoute

Sets the audio route. This method changes the audio route of the device. This generally should be
used during a call. The audio will be only be routed if the new audio route is available.

For Tablet devices, it is recommended to change to speaker route if available.

Parameters

audioRoute [AudioRoute, enum describing the new audio route]

Return Values

®  NewAudioRouteFound (Boolean):
° true: If the new audio route was found

° false: If the new audio route is unavailable

getAudioRoute

Gets the current audio route.

Parameters

N/A

Return Values

®  audioRoute [AudioRoute, enum describing the new audio route]

getAvailableAudioRoutes

Gets the available audio routes.

For Tablet devices, it is recommended to check if a speaker route is available.

Parameters

N/A

Return Values

B audioRoutelist [List<AudioRoute>, list of enums with the available audio routes]

-31-



3. API Classes WebRTC

3.4

34.1

34.1.1

3.4.1.2

ACConfiguration

Used to provide additional configuration options for the WebRTC SDK. Using this class is optional.
The class is a singleton object. The configuration object can be retrieved through getConfiguration.
Any changes in that object will be applied to the SDK. It is recommended to apply any changes before
calling the AudioCodesUA login method.

Class ACConfiguration({
ACConfiguration getConfiguration() ;
String wversion|() ;
int getLocalServerPort () ;
void setLocalServerPort (int port);
DTMFOptions getDTMFOptions () ;
void setDTMFOptions (DTMFOptions dtmfOptions) ;
VideoConfiguration getVideoConfiguration () ;
void setVideoConfiguration (VideoConfiguration configuration) ;
void setAutomaticCallOnRedirect (Boolean automaticRedirect) ;
Boolean getAutomaticCallOnRedirect () ;

void setRedirect (Boolean redirect, RemoteContact
redirectContact) ;

RemoteContact getRedirectContact() ;
boolean getRedirectEnabled() ;
}

Standard Methods

getConfiguration

Defines the static method that returns the current used configuration object.

Parameters

N/A

Return Values

m  configuration [ACConfiguration, current used configuration object; see Section 3.4]

version

Defines the static method that returns the current version of the SDK.

Parameters

N/A

Return Values

®  Version [String, version of the SDK, e.g., 1.x]

-32-



3. API Classes WebRTC

3.4.1.3

34.14

3.4.15

3.4.1.6

getLocalServerPort

Gets the current default local port used by the SIP stack.

Parameters

N/A

Return Values

B port [integer, default local user port (default 6000)]

setLocalServerPort

Changes the default local SIP server port from the default value (6000).

Parameters

B port [integer, default local server port]

Return Values

N/A

getDtmfOptions

Gets the current default local port used by the SIP stack

Parameters

N/A

Return Values

dtmfOptions [DTMFOptions, DTMFOptions class for setting the handling of DTMF tones; the default
value is for the WebRTC to handle DTMF tones]

setDtmfOptions

Changes the DTMFOptions class used by the SDK. This allows for sending DTMF through either the
WebRTC or SIP INFO. The class allows for changing DTMF duration and interval (if applicable for the
chosen method). See Section 3.6 for more information.

Parameters

m  dtmfOptions [DTMFOptions, DTMFQOptions class for setting the handling of DTMF tones]

Return Values

N/A

-33-



3. API Classes WebRTC

3.4.1.7

3.4.1.8

3.4.1.9

getVideoConfiguration

Gets the current video configuration used by the SDK.

Parameters

N/A

Return Values

B configuration [VideoConfiguration, class containing video configuration options]

setVideoConfiguration

Changes the video configurations options used by the SDK. See also Section 3.5.

Parameters

®  configuration [VideoConfiguration, class containing video configuration options]

Return Values

N/A

setAutomaticCallOnRedirect

Sets automatic call redirection for outgoing call redirection. If enabled, the SDK will automatically
attempt to call the number supplied in the 3XX response on the INVITE.

If not, the call will be terminated, and the redirect number will be provided in the callProgress
(redirect) callback. See the code example delivered with the SDK. In this case, the application using
the SDK will be responsible for placing a new call to the new number, if necessary.

Parameters

®  CallRedirected (Boolean):
° true: automatic redirect is enabled

° false: automatic redirect is disabled

Return Values

N/A

-34-



3. API Classes WebRTC

3.4.1.10

3.4.1.11

3.4.1.12

getAutomaticCallOnRedirect

Gets the current setting for automatic call redirection.

Parameters

N/A

Return Values
IsCallRedirected (Boolean):

B true: Automatic redirect is enabled

m  false: Redirect is disabled

setRedirect

This method allows for the setting of incoming call redirection. If enabled, all incoming calls will be
answered with a 302 response and the redirect contact provided in the redirectContact field. If the
redirect field is enabled, there will be no incoming call callbacks

Parameters

| redirect [Boolean, if true, all incoming call redirection is enabled; if not, then redirect is
disabled]

m  redirectContact [RemoteContact, the contact to whom the call should be redirected. Only
username is mandatory. The domain and scheme fields will be taken from the user account if
not provided.

Return Values

N/A

getRedirectContact

Gets the current contact that was set for incoming call redirection

Parameters

N/A

Return Values

B Redirect contact [RemoteContact, current contact set for incoming call redirection]

-35-



3. API Classes WebRTC

3.4.1.13 getRedirectEnabled

Gets the current setting for incoming call redirection.

Parameters

N/A

Return Values
IncomingCallRedirected (Boolean):

B true: Incoming call redirect is enabled

m  false: Incoming call redirect is disabled

-36-



3. API Classes

WebRTC

3.5

3.5.1

3.5.2

VideoConfiguration

Used to provide additional configuration options for the WebRTC SDK. Using this class is optional.
The class provides access to public parameters that can be changed if needed.

The configuration object can be retrieved through getVideoConfiguration in ACConfiguration class.
Calling setVideoConfiguration in the ACConfiguration class will apply the changes. It is recommend
to call setVideoConfiguration before showVideo is called.

Class VideoConfiguration/{

}

Camera Parameters

cameraWidth — captures the width of the camera (default 640)
cameraHeight - captures the height of the camera (default 480)

cameraFrameRate - captures the framerate of the camera (default 15)

Rendering Views Parameters

LOCAL_X_CONNECTING — Uppermost left corner (% of the screen width) of the local video
screen when a remote video stream is not yet available.

LOCAL_Y_CONNECTING - Uppermost left corner (% of the screen height) of the local video
screen when a remote video stream is not yet available.

LOCAL_WIDTH_CONNECTING — Lowermost right corner (% of the screen width) of the local
video screen when a remote video stream is not yet available.

LOCAL_HEIGHT_CONNECTING — Lowermost right corner (% of the screen height) of the local
video screen when a remote video stream is not yet available.

LOCAL_X_CONNECTED - Uppermost left corner (% of the screen width) of the local video
screen when a remote video stream is available.

LOCAL_Y_CONNECTED - Uppermost left corner (% of the screen height) of the local video
screen when a remote video stream is available.

LOCAL_WIDTH_CONNECTED — Lowermost right corner (% of the screen width) of the local
video screen when a remote video stream is available.

LOCAL_HEIGHT_CONNECTED — Lowermost right corner (% of the screen height) of the local
video screen when a remote video stream is available.

REMOTE_X - Uppermost left corner (% of the screen width) of the remote video screen when
a remote video stream is available.

REMOTE_Y - Uppermost left corner (% of the screen height) of the remote video screen when
a remote video stream is available.

REMOTE_WIDTH - Lowermost right corner (% of the screen width) of the remote video screen
when a remote video stream is available

REMOTE_HEIGHT - Lowermost right corner (% of the screen height) of the remote video
screen when a remote video stream is available

-37-



3. API Classes WebRTC

3.6

3.6.1

DTMFOptions

Used to provide additional configuration options for the WebRTC SDK. Using this class is optional.
The class provides access to public parameters that can be changed if needed. The class allows
configuration of sending DTMF events.

Class DTMFOptions{
}

DTMF Parameters

m  dtmfMethod - DTMFMethod enum parameter that supports sending of DTMF through:

e  WEBRTC - DTMF is sent through media by telephone-event using the WebRTC engine.
This is the default method.

° SIP_INFO - DTMF events are sent through SIP_INFO events.

®  duration - duration of the DTMF event, in milliseconds. When using SIP_INFO, the minimum is
100, which is the default value.

®  intervalGap - the interval gap in milliseconds between sending DTMF events. This is only
relevant for WEBRTC DTMF events. Default: 70.

-38 -



3. API Classes WebRTC

3.7

3.7.1

3.7.1.1

3.7.1.2

3.7.1.3

RemoteContact

Used to represent a remote contact. This can be either a dialed number or a remote contact received
through an incoming call.

Class RemoteContact{
String getDisplayName () ;
String getUserName () ;
String getDomain () ;
void setDisplayName (String displayName) ;
void setUserName (String username) ;
void setDomain (String domain) ;

Standard Methods

getDisplayName

Gets the contact display name. Note that this might not be available since the remote contact did
not set a display name.

Parameters

N/A

Return Values

m  displayName [String, display name of the remote contact]

getUserName

Gets the contact user name.

Parameters

N/A

Return Values

userName [String, user name of the remote contact]

getDomain

Gets the contact domain.

Parameters

N/A

Return Values

®  domain [String, domain of the remote contact]

-39-



3. API Classes WebRTC

3.7.14

3.7.1.5

3.7.1.6

setDisplayName

(Optional) Sets the contact display name. Since this does not affect SIP signaling, it's optional; it
allows for easier retrieval of the display name used in the call.

Parameters

m  displayName [String, display name of the remote contact]

Return Values

N/A

setUsername

Sets the contact user name.

Parameters

®  userName [String, user name of the remote contact]

Return Values

N/A

setDomain

(Optional) Sets the contact domain.

Parameters

domain [String, domain of the remote contact. This value doesn't usually have to be set as the
remote contact is likely to reside in the same domain]

Return Values

N/A

-40 -



3. API Classes

WebRTC

3.8

3.8.1

3.9

3.9.1

Terminationinfo

This section describes Call Termination information.

Class TerminationInfo{

CallTermination;

int statusCode;
String reason;
String reasonHeader;
String sipMessage;

Terminationinfo attribute

B CallTermination — enum indicating the reason for the termination. This is a simplified version
of the status code and should be enough for most call cases

m  statusCode — SIP status code of the termination (e.g. 404 or 500, etc...). This can be useful in
specific use cases

B reason - SIP reason, e.g. Server Internal Error or User Not Found

®  reasonHeader — SIP reason header — describes a specific reason for the call termination, e.g.
in case of 500 Server Internal Error, the reason header could be: Reason: SIP ; cause=500;
tet="General Routing Failure”

m  sipMessage — the last sip message, this will be mostly be used for debugging or for future
uses

InfoAlert

This section describes Call Termination information.

Class InfoAlert/{

boolean autoAnswer;

int delay;

InfoAlert attribute

B autoAnswer — Boolean indicating whether the call should be answered automatically after
the delay property value

m  delay — The amount of time, in seconds, that needs to pass before the call is answered

automatically.

-41 -






4. API Callbacks/ Listeners Interfaces WebRTC

4.1

4.1.1

4.1.2

4.1.3

API Callbacks/ Listeners Interfaces

The API provides capability to register in order to listen to different types of events. Here's a list of
the interfaces that must be implemented to receive an event:

AudioCodesEventListener

Interface for receiving SDK events. This interface must be implemented and set through the
AudioCodesUA class to receive these event.

Login state changed event

Triggered when the login state has been changed.

Syntax

void loginStateChanged(Boolean isLogin, String cause);

Parameters

B IsLogin [Boolean, 'true' if logged in and 'false' if not logged in]

B cause [String, text describing the received SIP reason. This can be mostly used if more
information on a login failure is required]

Incoming call event

Triggered when receiving an incoming call.

Syntax

void incomingCall (AudioCodesSession call, InfoAlert infoAlert);

Parameters

B Session [AudioCodesSession, the incoming call session object]

m  infoAlert [InfoAlert, the incoming call auto answer object]

Incoming IM message event

Triggered when receiving an incoming message.

Syntax

void onIncomingInstantMessage (RemoteContact contact, String
message) ;

Parameters

B contact [RemoteContact, remote contact that send the message]

B message [String, the message that the remote contact send]

-43 -



4. API Callbacks/ Listeners Interfaces WebRTC

4.14

IM Message status event

When a message has been sent, the status of the message can be tracked using the callback
onlnstantMessageStatus.

Syntax

void onInstantMessageStatus (InstanceMessageStatus status, long
id);

Parameters

m  status [InstanceMessageStatus, status of the message. This is an enum with the following
values:

° SUCCESS — the message has been delivered to the remote contact

e  ACCEPTED - the message has been delivered to the server (remote contact might not
have received the message yet though)

° NOT_FOUND - the remote contact does not exist or the server is not able to deliver the
message to the remote contact

° UNKNOWN_ERROR - an unknown error occurred, the message was not delivered

m  Message ID [long, the ID of the message, this corresponds to the ID used in
sendInstantMessage]

-44 -



4. API Callbacks/ Listeners Interfaces WebRTC

4.2

4.2.1

4.2.2

4.2.3

AudioCodesSessionEventListener

callTerminated

Callback for when the session is terminated by the local or the remote side.

Syntax

void callTerminated (AudioCodesSession session, Terminationinfo
info) ;

Parameters

B session [AudioCodesSession refers to the call session object that was terminated. The object
will be removed at the end of the callTerminated method]

®  info [Terminationinfo — Refers to the object containing information about the termination
reason. e.g., termination reason, status code,. See Terminationinfo.

callProgress

Callback for changes in the state of the call. The call progress state can be retrieved by getCallState
in the AudioCodesSession object.

Syntax

void callProgress (AudioCodesSession call);

Parameters

®  session [AudioCodesSession, the call session object]

cameraSwitched

Callback for when the camera has been switched between the front or the back camera.

Syntax

volid cameraSwitched (Boolean frontCamera) ;

Parameters
FrontCamera (Boolean):

B true: The camera has switched to the front camera

m  false: The camera has switched to the back camera

Return Values

®E  N/A

-45 -



4. API Callbacks/ Listeners Interfaces WebRTC

4.24

4.2.5

4.2.6

reinviteWithvideoCallback

Callback for when a video is added during a call. This callback can be used to call showVideo (from
the Ul thread). See the code example delivered with the SDK.

Syntax

void reinviteWithVideoCallback (AudiocodesSession session);

Parameters

B session [AudioCodesSession, the call session object]

mediaFailed

Callback for a failure in the media. This callback is for information purposes only and can be used to
inform the user that there currently is no media. This can be most useful in the
case of a network change, where a media fail might be expected.

Syntax

void mediaFailed (AudioCodesSession call);

Parameters

B session [AudioCodesSession, the call session object]

incoming Notify

Callback for when an incoming notify state is received, video is added during the call. This callback
can be used to execute the incoming notify state (from the Ul thread if needed). See the code
example delivered with the SDK.

Syntax
void incomingNotify (NotifyEvent notifyEvent, String dtmfValue);

Parameters

m  notifyEvent [NotifyEvent, the call notify event type, This is an enum with the following values:

e  TALK- If the call is incoming and is not answered yet, then the client application is
required to answer the call. If the call is already active and on hold, then the client
application is required to un-hold it.

° HOLD- If the call is active, then the client application is required to put the call on hold.

° DTMF- The client application is required to send DTMF characters provided in the dtmf
string parameter. This should be performed using calls to the sendDtmf method
consecutively for each character in the DTMF string, and in a way that is non-blocking to
the current thread. The interval between sending each DTMF character should be
MAX(DTMFOptions.intervalGap, DTMFOptions.duration).

° CONFERENCE — Currently not supported

B MESSAGE - Incoming notification for a SIP messagedtmfValue [String, the call dtmf value or
message body, null in case notifyEvent is not DTMF or MESSAGE]

- 46 -



4. API Callbacks/ Listeners Interfaces WebRTC

4.3

4.3.1

4.3.2

WebRTCAudioRoutelistener

Interface for receiving audio routes events. The interface must be implemented and set through the
WebRTCAudioManager class to receive these events.

audioRoutesChanged

Callback for when the list of available audio routes has been changed, for example, if the user is
connected to a Bluetooth audio device

Syntax

void audioRoutesChanged (List<WebRTCAudioManager.AudioRoute>
audioRoutelist) ;

Parameters

®  audioRoutelist [List<WebRTCAudioManager.AudioRoute>, a list of available audio routes]

currentAudioRouteChanged

Callback for when the currently used audio route has been changed. If the user adds a Bluetooth
audio device, for example, the SDK routes the audio to the Bluetooth device and this callback will be
called.

Syntax

void currentAudioRouteChanged (WebRTCAudioManager.AudioRoute
newAudioRoute) ;

Parameters

newAudioRoute [WebRTCAudioManager.AudioRoute, the new audio route where the audio is being
routed to]

-47 -



5. Use Examples WebRTC

5.1

5.2

5.3

54

5.5

5.6

5.7

Use Examples

Here are some user examples for your reference.

User Agent: Create Instance, Set Server and Account

AudioCodesUA phone = new AudioCodesUA(); // phone API

ArrayList<PeerConnection.IceServer> iceServerList = new
ArrayList<PeerConnection.IceServer> () ;

phone.setServerConfig (“webrtclab.audiocodes.com”, 5080,
“example.com”, Transport.TCP, iceServerlist);

phone.setAccount (YJohn”, “Wx****xx7” = “Jjohn Smit”, “jsmit”);

User Agent: Set Listeners (Callbacks)

phone.setListener (new AudioCodesEventListener () {

@Override

public void loginStateChanged (Boolean isLogin, String cause) {
// place your code here (remember that this is being called
//on the WebRTC SDK thread, not on the UI thread)

}

@Override
public void incomingCall (AudioCodesSession session, InfoAlert
infoAlert) {
// place your code here (remember that this is being called
//on the WebRTC SDK thread, not on the UI thread)
}
}) s

User Agent login: Connection to SBC Server and Login

phone.login (getApplicationContext ()); // getApplicationContext is
an Android method available for Activities and Services

Make a Call

Boolean withVideo = true;

AudioCodesSession activeCall = phone.call (“jane”, withVideo,
null) ;

Send DTMF During a Call

activeCall.sendDTMF (DTMF.NINE) ;

Send SIP Message During a Call

activeCall.sendInfo (String) ;

Mute / Unmute During a Call

activeCall.muteAudio (true) ;

-48 -



5. Use Examples WebRTC

activeCall.muteAudio (false) ;

5.8 Accept Incoming Call (with video)

incomingCall.answer (null, true);

5.9 Reject Incoming Call

incomingCall.reject (null) ;

5.10 Terminate a Call

activeCall.terminate () ;

5.11 Use of Video

Include the ac_webrtc_video Ul element in the XML file for your call activity:

<include
android:id="@+id/my_ac_webrtc_video"
layout="@layout/ac_webrtc_video"
android:layout width="match_ parent”
android:layout height="match parent" />

Update the position of your local render screen:
activeCall.setLocalRenderPosition (70, 60);

Call showVideo with your call activity; the WebRTC SDK will locate the ac_webrtc_video Ul element
and use it to display the remote and the local video:

activeCall.showVideo (CallActivity.this);

-49 -



International Headquarters
Naimi Park

6 Ofra Haza Street

Or Yehuda, 6032303, Israel
Tel: +972-3-976-4000

Fax: +972-3-976-4040

AudioCodes Inc.

80 Kingsbridge Rd
Piscataway, NJ 08854, USA
Tel: +1-732-469-0880

Fax: +1-732-469-2298

Contact us: https://www.audiocodes.com/corporate/offices-worldwide
Website: https://www.audiocodes.com

©2025 AudioCodes Ltd. All rights reserved. AudioCodes, AC, HD VolP, HD VolP Sounds Better, IPmedia,
Mediant, MediaPack, What's Inside Matters, OSN, SmartTAP, User Management Pack, VMAS, VolPerfect,
VolPerfectHD, Your Gateway To VolP, 3GX, AudioCodes One Voice, AudioCodes Meeting Insights, and
AudioCodes Room Experience are trademarks or registered trademarks of AudioCodes Limited. All other
products or trademarks are property of their respective owners. Product specifications are subject to
change without notice.

Document #: LTRT-14073

QX audiocodes



https://www.audiocodes.com/corporate/offices-worldwide
https://www.audiocodes.com/

	WebRTC Android Client SDK API Reference Guide Ver. 2.2.0
	Table of Contents
	Notice
	Security Vulnerabilities
	WEEE EU Directive
	Customer Support
	Stay in the Loop with AudioCodes
	Abbreviations and Terminology
	Related Documentation
	Document Revision Record
	Documentation Feedback

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Benefits

	2 Android SDK
	2.1 Before you Start
	2.2 Installation

	3 API Classes
	3.1 AudioCodesUA
	3.1.1 Standard Methods
	3.1.1.1 getInstance
	3.1.1.2 setServerConfig
	3.1.1.3 setAccount (1)
	3.1.1.4 setAccount (2)
	3.1.1.5 setListeners
	3.1.1.6 login
	3.1.1.7 login (click to call)
	3.1.1.8 logout
	3.1.1.9 call
	3.1.1.10 setVerifyServer
	3.1.1.11 setVerifyServer

	3.1.2 Advanced Methods
	3.1.2.1 setRegisterExtraHeaders
	3.1.2.2 setInviteExtraHeaders
	3.1.2.3 getUserAgent
	3.1.2.4 setUserAgent
	3.1.2.5 getRegExpires
	3.1.2.6 setRegExpires
	3.1.2.7 setUseSessionTimer
	3.1.2.8 setLogLevel
	3.1.2.9 setLogger
	3.1.2.10 handleNetworkChange
	3.1.2.11 getSessionList
	3.1.2.12 List of Sessions [ArrayList<AudiocodesSession>, List of Active Sessions]disconnectOnBrokenConnection
	3.1.2.13 setContactRewrite
	3.1.2.14 setOauthToken
	3.1.2.15 setPushToken
	3.1.2.16 updatePushToken
	3.1.2.17 sendInstantMessage
	3.1.2.18 setAllowHeader


	3.2 AudioCodesSession
	3.2.1 Standard Methods
	3.2.1.1 getSessionID
	3.2.1.2 answer
	3.2.1.3 reject
	3.2.1.4 Terminate
	3.2.1.5 muteAudio
	3.2.1.6 muteVideo
	3.2.1.7 isAudioMuted
	3.2.1.8 isVideoMuted
	3.2.1.9 sendDTMF
	3.2.1.10 sendInfo
	3.2.1.11 isOutgoing
	3.2.1.12 hasVideo
	3.2.1.13 getCallState
	3.2.1.14 getTermination
	3.2.1.15 duration
	3.2.1.16 isLocalHold
	3.2.1.17 isRemoteHold
	3.2.1.18 setUserData
	3.2.1.19 getUserData
	3.2.1.20 hold
	3.2.1.21 switchCamera
	3.2.1.22 showVideo (1)
	3.2.1.23 showVideo (2)
	3.2.1.24 stopVideo
	3.2.1.25 setLocalRenderPosition
	3.2.1.26 addSessionEventListener
	3.2.1.27 removeSessionEventListener
	3.2.1.28 getStats
	3.2.1.29 redirect
	3.2.1.30 reinviteWithVideo
	3.2.1.31 transferCall (blind transfer)
	3.2.1.32 transferCall (attended transfer)
	3.2.1.33 getTransferContact
	3.2.1.34 getTransferState


	3.3 WebRTCAudioManager
	3.3.1 Standard Methods
	3.3.1.1 getInstance
	3.3.1.2 setWebRTCAudioRouteListener
	3.3.1.3 setAudioRoute
	3.3.1.4 getAudioRoute
	3.3.1.5 getAvailableAudioRoutes


	3.4 ACConfiguration
	3.4.1 Standard Methods
	3.4.1.1 getConfiguration
	3.4.1.2 version
	3.4.1.3 getLocalServerPort
	3.4.1.4 setLocalServerPort
	3.4.1.5 getDtmfOptions
	3.4.1.6 setDtmfOptions
	3.4.1.7 getVideoConfiguration
	3.4.1.8 setVideoConfiguration
	3.4.1.9 setAutomaticCallOnRedirect
	3.4.1.10 getAutomaticCallOnRedirect
	3.4.1.11 setRedirect
	3.4.1.12 getRedirectContact
	3.4.1.13 getRedirectEnabled


	3.5 VideoConfiguration
	3.5.1 Camera Parameters
	3.5.2 Rendering Views Parameters

	3.6 DTMFOptions
	3.6.1 DTMF Parameters

	3.7 RemoteContact
	3.7.1 Standard Methods
	3.7.1.1 getDisplayName
	3.7.1.2 getUserName
	3.7.1.3 getDomain
	3.7.1.4 setDisplayName
	3.7.1.5 setUsername
	3.7.1.6 setDomain


	3.8 TerminationInfo
	3.8.1 TerminationInfo attribute

	3.9 InfoAlert
	3.9.1 InfoAlert attribute


	4 API Callbacks/ Listeners Interfaces
	4.1 AudioCodesEventListener
	4.1.1 Login state changed event
	4.1.2 Incoming call event
	4.1.3 Incoming IM message event
	4.1.4 IM Message status event

	4.2 AudioCodesSessionEventListener
	4.2.1 callTerminated
	4.2.2 callProgress
	4.2.3 cameraSwitched
	4.2.4 reinviteWithvideoCallback
	4.2.5 mediaFailed
	4.2.6 incoming Notify

	4.3 WebRTCAudioRouteListener
	4.3.1 audioRoutesChanged
	4.3.2 currentAudioRouteChanged


	5 Use Examples
	5.1 User Agent: Create Instance, Set Server and Account
	5.2 User Agent: Set Listeners (Callbacks)
	5.3 User Agent login: Connection to SBC Server and Login
	5.4 Make a Call
	5.5 Send DTMF During a Call
	5.6 Send SIP Message During a Call
	5.7 Mute / Unmute During a Call
	5.8 Accept Incoming Call (with video)
	5.9 Reject Incoming Call
	5.10 Terminate a Call
	5.11 Use of Video


