
API for AudioCodes Transcription Services - Spea ker Recognition APIs v0.12

API Reference Guide

AudioCodes Speech-to-Text Transcription Engine for Voice.AI

ATS Speaker Recognition API

Version 0.12

Contents Speaker Recognition Similarity Measure - WebSocket API

- ii -

Table of Contents

Notice .. iv

Customer Support ... iv

Stay in the Loop with AudioCodes ... iv

Abbreviations and Terminology ... iv

Related Documentation ... iv

Document Revision Record .. iv

Documentation Feedback .. iv

1 Introduction ...1

2 AudioCodes Speaker Recognition Application guidelines ..2

2.1 Introduction & Considerations ... 2

2.1.1 General Considerations .. 2

2.2 Enrollment and Segmentation Flow Charts .. 3

2.2.1 I/O Diagram .. 3

2.2.2 Definitions .. 3

2.2.3 Configurations .. 3

2.2.4 Application Flow ... 4

2.3 Enrollment Management ... 5

2.4 Speaker Segmentation Guidelines .. 6

2.5 Voiceprint Management ... 6

2.5.1 Automatic ID Assignment Mode ... 6

2.5.1.1 Use Cases ... 7

2.5.2 Resolving Anonymous Voiceprints .. 8

2.5.2.1 Example Use Case .. 9

2.5.3 Resolving Corrupted Voiceprints .. 9

3 Enroll & Segment WebSocket API ... 10

3.1 Textual message payload to server .. 10

3.2 Textual message payload from server .. 14

3.3 Packing the voiceprint bytes as payload to server .. 14

3.4 Enrollment parameters .. 15

3.5 Binary message payload to server .. 15

3.6 Text message for base64 based audio streaming to server .. 15

3.7 Session Termination ... 16

3.8 Control message payload to server .. 16

4 Speaker Recognition Diarization - WebSocket API .. 19

4.1 Understanding Session and Process ... 19

4.2 Textual message payload to server .. 19

4.3 Termination .. 21

Contents Speaker Recognition Similarity Measure - WebSocket API

- iii -

4.4 Status Transitions ... 21

4.5 Control message payload to server .. 21

5 Speaker Recognition Enrollment WebSocket API .. 22

5.1 Textual message payload to server .. 22

5.2 Packing the voiceprint bytes as payload to server .. 26

5.3 Enrollment parameters .. 27

5.4 Binary message payload to server .. 27

5.5 Text message for base64 based audio streaming to server .. 27

5.6 Termination .. 27

5.7 Textual message payload from server .. 28

5.8 Control message payload to server .. 28

6 Speaker Recognition Segmentation - WebSocket API .. 29

6.1 Understanding Session and Process ... 29

6.2 Textual message payload to server .. 29

6.3 Textual message payload from server .. 31

6.4 Binary message payload to server .. 32

6.5 Text message for base64 based audio streaming to server .. 32

6.6 Termination .. 33

6.7 Status Transitions ... 33

6.8 Control message payload to server .. 33

7 Speaker Recognition Similarity Measure - WebSocket API .. 17

7.1 Understanding Session and Process ... 17

7.2 Textual message payload to server .. 17

7.3 Textual message payload from server .. 18

7.4 Status Transitions ... 18

7.5 Control message payload to server .. 18

8 AudioCodes Speech REST API .. 34

8.1 Offline Diarization API .. 34

8.2 Offline Diarize API response example (with word-segments as input) 37

Notices Speaker Recognition Similarity Measure - WebSocket API

- iv -

Notice

Notice

Information contained in this document is believed to be accurate and reliable at the time of
printing. However, due to ongoing product improvements and revisions, AudioCodes cannot
guarantee accuracy of printed material after the Date Published nor can it accept responsibility for
errors or omissions. Updates to this document can be downloaded from
https://www.audiocodes.com/library/technical-documents.

This document is subject to change without notice.

Date Published: March-27-2024

Customer Support

Customer technical support and services are provided by AudioCodes or by an authorized
AudioCodes Service Partner. For more information on how to buy technical support for AudioCodes
products and for contact information, please visit our website at
https://www.audiocodes.com/services-support/maintenance-and-support.

Stay in the Loop with AudioCodes

Abbreviations and Terminology

Each abbreviation, unless widely used, is spelled out in full when first used.

Related Documentation

Document Name

LTRT-26001 AudioCodes Automatic Speech Recognition – WebSocket API (v0.49)

LTRT-26002 AudioCodes Speech – LVCSR WebSocket API (v0.59)

LTRT-26003 AudioCodes Speech REST API (v0.5)

Document Revision Record

LTRT Description

26004 Initial document release for Version 0.11.

26013 Added different APIs to documentation for Version 0.12.

Documentation Feedback

AudioCodes continually strives to produce high quality documentation. If you have any comments
(suggestions or errors) regarding this document, please fill out the Documentation Feedback form
on our website at https://online.audiocodes.com/documentation-feedback.

https://www.audiocodes.com/library/technical-documents
https://www.audiocodes.com/services-support/maintenance-and-support
https://online.audiocodes.com/documentation-feedback
http://www.twitter.com/audiocodes
http://www.facebook.com/audiocodes
http://www.linkedin.com/companies/audiocodes
http://www.youtube.com/user/audioserge
http://blog.audiocodes.com/

1. Introduction Speaker Recognition Similarity Measure - WebSocket API

- 1 -

1 Introduction
This document describes how to interact with AudioCodes’ Speaker Segmentation technology
suitable for various use cases offline. The API exposes technology that provides dual functionality,
allowing enrollment using previous voiceprints and/or dominant speaker segmentation as input and
output speaker segmentation and updated voiceprints. The technology operates via WebSocket-
based protocol API, which is explained below. The document provides details of LVCSR session
interaction including the parameters that govern the process.

Speaker enrollment and segmentation WebSocket endpoint

ws[s]://<server IP>:<port>/api/v1/speech: SREnrollAndSegment

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 2 -

2 AudioCodes Speaker Recognition Application
guidelines

The following guidelines provided primarily focus on the Enroll & Segment APIs and similarity APIs.

Additionally, the diarization REST and WebSocket APIs are for more generic transcription services use

case. The Enrollment API and Segmentation API address less common use cases.

2.1 Introduction & Considerations

This section highlights the main features of the Speaker Recognition (SR) technology.

◼ Multi-speaker enrollment: The SR server is capable of enrolling multiple speakers from a
single audio recording, without the need to fragment the audio into each speaker separately.

◼ Enhancement of external speaker segmentation: The SR enrollment API exports an enhanced
version of the given external speaker segmentation, if given, (e.g., MSFT Dominant Speaker),
which is better aligned to the audio on a speaker-dependent basis.

◼ Multiple speakers on the same device: The case of speaker enrollment in the presence of
multiple speakers in the same audio channel, and/or when external audio/video is shared, is
supported.

◼ Verification of enrollment speech: A layer of speaker verification is activated during the
enrollment process, to ensure the right speaker ID is assigned to each voiceprint, whenever
possible.

◼ Automatic enrollment of anonymous speakers: Voiceprints are also created for speakers
who the SR server is unsure about their identity.

◼ Enrollment-and-Segmentation: Support in segmentation cut-through, allowing speaker
enrollment and segmentation in a single API call.

◼ Voiceprint management: APIs for voiceprint management, enabling the users of the
application to control the health and resolve issues with their voiceprints.

2.1.1 General Considerations

The SR server and the I/O of the full system are different and therefore it is necessary to provide
some mediation utilities to overcome the following:

◼ Audio file support: The system uses raw audio files (header-less) and there is a necessity to
stream them to the SR server.

◼ Voiceprint storage: Due to data privacy (GDPR, etc.), the system must keep the speaker
voiceprints in a secure place, and not on the SR server. A voiceprint is textual file, and its
expected size is at most 4kB (not constant). The voiceprint size may be larger in future
releases.

◼ External speaker segmentation: Some conferencing system (e.g., MSFT Teams) provide
additional metadata about speaker or voiced segmentation that can be used in the speaker
enrollment and segmentation processes. Per enrollment, the API allows (optionally) to
suggest the speaker ID per segment, where segments that do not belong to any speaker now
being enrolled are ignored.

◼ Segmentation units: Speaker segmentation is given in units of 10msec frames. The
application must adjust to this unit, in all APIs including external segmentation to
enrollment/segmentation and in segmentation results.

◼ Stateless server: The SR server is stateless, and all information is encapsulated inside the
voiceprints the application manages and stores.

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 3 -

2.2 Enrollment and Segmentation Flow Charts

This section describes graphically the application guidelines for handling the meeting recordings and
initiating enrollment and segmentation processes. Definitions are given in this section; details are
specified in the rest of the sections.

2.2.1 I/O Diagram

Recording Audio

SR Enrollment-
and-Segmentation

Enhanced External Segmentation

External Segmentation New/Updated Speaker Voiceprints

Speaker Voiceprints
(empty voiceprint if it does not exist)

Updated “Other” Speaker Voiceprints
(zero or more)

“Other” Speaker Voiceprints
 (empty voiceprint if it does not exist)

New Anonymous Speaker
Voiceprints (zero or more)

Speaker Segmentation

Configurations

Figure 1 - SR Enrollment-and-Segmentation I/O diagram

2.2.2 Definitions

◼ A (normal) speaker is a participant that is connected to the meeting.

• A speaker may or may not speak during the meeting.

• A conference room entity (e.g., Gilboa Conference Room) is also considered as a normal
speaker. Its ID must start with an asterisk (*) and its voiceprint must be empty.

◼ An “other” speaker is a scheduled participant (an invitee) that did not connect to the meeting
(see section 2.3, "Enrollment Management" for more details).

◼ A voiceprint may be empty, zero, or non-zero. An empty voiceprint is a voiceprint that
contains only metadata (e.g., speaker ID), and no data. A zero voiceprint is a non-empty
voiceprint with a zero matureness score (see section 2.3, "Enrollment Management").
Conversely, a non-zero voiceprint is a non-empty voiceprint with non-zero matureness score.
The SR server treats empty voiceprints and zero voiceprints equally.

◼ The external speaker segmentations specify which audio segments have speech activity.

• In case of single-speaker enrollment, this input is optional, and the segmentation may or
may not indicate the speaker ID for each segment. If speaker IDs are indicated, then only
the segments that match the ID of the enrolling speaker are taken into consideration.

• In case of multi-speaker enrollment, this input is obligatory, and the segmentation must
indicate the speaker ID (or the conference room ID) for each segment.

◼ Configurations: see next subsection.

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 4 -

2.2.3 Configurations

The applicable configurations are:

◼ Automatic ID Assignment Mode: enable / disable. See corresponding section for details.

2.2.4 Application Flow

The chart below shows a simplified application flow for handling the meeting recordings.

Load the meeting s audio
recording

Load the external speaker
segmentation

Load the voiceprints of
the normal participants
(empty if does not exist)

Load the voiceprints of
the other participants,

if any

Enrollment-and-
Segmentation

Store the resulting
voiceprints of the normal

participants and the
 other participants

Obtain the anonymous
voiceprints (if any)

Obtain the resulting
speaker segmentation

Set configurations

Resolve the anonymous
voiceprints*

Update the speaker
segmentation (if

applicable) and store it

Store the new speaker
voiceprints (in any)

Store the remaining
anonymous voiceprints

(in any)

* Refer to see section 2.5.2, "Resolving Anonymous Voiceprints and Figure 4 therein.

Figure 2 - Enrollment-and-Segmentation application flow

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 5 -

2.3 Enrollment Management

The following is a list of application guidelines regarding the speaker enrollment process.

◼ Online meetings: Speaker enrollment is recommended for online meetings only, where most
speakers use their personal device to remotely connect to the meeting.

◼ Conference room meetings:

• Generally, the case of conference room meetings is not supported: Speaker enrollment
from conference room meetings is not recommended, and the recognition accuracy of
the SR server in this case is not assured.

• The SR server automatically detects conference room meetings by searching for an
asterisk sign (*) at the beginning of the speaker ID. When detected, updating of the
speaker voiceprints is prevented.

• The recommended way for the application to handle conference room meetings is to
request Enrollment-and-Segmentation. The application must ensure that the conference
room is included as a speaker in the list of participants and that its ID starts with an
asterisk (*). External speaker labels with speaker IDs must be provided, even if all speech
segments are marked with the ID of the conference room. Participants who did not
connect to the meeting using their personal device are indicated as “other” speakers
(see ‘Scheduled participants’ bullet at the bottom of this list).

◼ Company meetings: The case of a company meeting held physically, e.g., in an auditorium in
the presence of hundreds of employees, was not evaluated; the SR performance is
unpredictable. The case of online company meeting was not evaluated as well, but the SR
server is expected to retain the same recognition accuracy rate as in any other online
meeting.

◼ Multi-speaker enrollment: Usually, there are multiple speakers in a recording. There is no
need to fragment a recording into speaker-specific fragments to control the enrollment
process and digest each speaker separately. The SR server is capable of multiple-speaker
enrollment in a single API call.

◼ ENROLLED state: A speaker voiceprint can be in one of two states: ENROLLING and
ENROLLED. The current recommendation is to always keep enrolling the speaker, so its
voiceprint follows the specific speaker voice changes over time. Therefore, ENROLLED state is
not reflected; only ENROLLING state is reflected.

◼ Voiceprint matureness: The enrollment API provides a metric of the voiceprint matureness in
the form of a score ranging from 0-100, as specified in the table below.

Table 1: Voiceprint Matureness

Score State Quality

0 ENROLLING N/A

1-25 ENROLLING Poor

26-50 ENROLLING Fair

51-75 ENROLLING Good

76-99 ENROLLING Excellent

We term a voiceprint with a matureness score of 0 a zero voiceprint, and a voiceprint with a
matureness score greater than 0 a non-zero voiceprint.

◼ Scheduled participants (denoted in the APIs as “other” speakers): One possible scenario is
that a scheduled participant did not join the meeting using his/her own device, but instead
physically joins a colleague who did connect to the meeting. To cope with this scenario,
indications about scheduled participants that did not connect to the meeting are provided to
the SR server during the enrollment process.

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 6 -

◼ Contamination by multiple speakers: It is absolutely forbidden to mix between speakers
during the enrollment process. In such a case, it is recommended to enroll from scratch or
from the point the voiceprint was corrupted.

2.4 Speaker Segmentation Guidelines

The recommendation is to initiate an Enrollment-and-Segmentation process for every meeting, to
achieve the best accuracy the SR server can provide. Initiating an enrollment process and then
initiating a separate segmentation process is possible, but it results in a lower recognition accuracy,
with respect to the recommended method.

2.5 Voiceprint Management

Generally, the SR server creates and updates the speaker voiceprints automatically, whenever
possible. The application is responsible only for storing the voiceprints.

In addition, an enrollment process may yield anonymous voiceprints when the SR server is unsure of
the speaker identity. This section gives application guidelines to resolve anonymous voiceprints or
cases of speaker voiceprint corruption.

2.5.1 Automatic ID Assignment Mode

Is it a new speaker
(has no prior voiceprint or a

zero prior voiceprint)?

The existing speaker
voiceprint is updated

No

Is Auto ID Assignment mode
enabled?

Yes

A non-zero anonymous
voiceprint is created.
An zero voiceprint is

created for the speaker.

No

Do the conditions to ID
assignment hold?

A new non-zero voiceprint
is created for the speaker

Yes No

Yes

Figure 3 – SR server flow for assigning a speaker ID to a voiceprint

The Automatic ID assignment mode can be configured to either enable (default) or disable.

This mode is relevant only for “new” speakers, for which there is no prior voiceprint or only a zero
voiceprint (zero matureness score). When enabled, and the SR server encounters a “new” speaker,
it may create a non-zero voiceprint for him/her if certain conditions hold:

◼ This is an online meeting.

◼ All scheduled participants joined the meeting.

◼ Only a single speaker is detected in the speech segments of the designated speaker.

If these conditions do not hold, or if the Automatic ID assignment mode is disabled, then a zero
voiceprint is always created for the “new” speaker. Instead, an anonymous voiceprint is created,
and this voiceprint needs to be resolved (see next section: Resolving Anonymous Voiceprints). In

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 7 -

other words, a speaker ID is assigned to a voiceprint only if the speaker has a non-zero prior
voiceprint and he/she was positively identified.

Under rare conditions, the Automatic ID assignment mode can cause a failure, assigning a voiceprint
with the wrong speaker ID. Thus, the application has the option to disable this mode to mitigate this
possibility (see section 2.5.1.1, "Use Cases").

Figure 3 above gives a graphical representation of the above explanations.

2.5.1.1 Use Cases

An organization in which there are only online meetings, and where each participant is remotely
connected to the meeting with his/her own personal device, may find the Automatic ID Assignment
mode very useful. The speaker voiceprints are automatically created and updated, with only a rare
need for manual intervention.

On the other end, an organization in which all meetings are physically held in conference rooms,
should work only with the manual mode. Anonymous voiceprints should be constantly resolved by
manual means, until all employees and regular guests1 are enrolled (have voiceprints).

In between, a hybrid organization that have both kinds of meetings, can choose between automatic
mode and manual mode as suited. Claims for and against each mode should consider what is the
most common type of meeting and how much additional resources can be invested in manual
operations.

1 Regular guest is a person, out of the organization, that has recurring interactions with the organization. One-
time guests, on the other hand, will always require manual ID assignment, regardless of the ID assignment mode
(automatic or manual), unless leaving them as anonymous is acceptable.

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 8 -

2.5.2 Resolving Anonymous Voiceprints

A new anonymous
voiceprint was created in

some meeting

A user wishes to resolve
(identify) that

anonymous voiceprint

The user listens to speech
segments of the

anonymous speaker
within the meeting

recording and assigns a
speaker ID to the

voiceprint

The user choses versus
which set of speakers to

verify the anonymous
voiceprint

Does the speaker already
have a non-zero

voiceprint?

Manual
Assignment

Voiceprint
Verification

Voiceprint verification

Is the verification score
greater than the

threshold?

Do nothing

No

Set the anonymous
voiceprint as the new
speaker s voiceprint

No

Update the meeting
segmentation

Yes

Yes

Discard the anonymous
voiceprint

Figure 4 – Flow for resolving anonymous voiceprints

Anonymous voiceprints are meeting-specific; they are created when the SR server is unsure of the
speaker identity. The user has the option to resolve them by assigning a speaker ID to the anonymous
voiceprint(s). This can be done manually, by an API which is out of the scope of the SR server, or by
verifying the anonymous voiceprint versus an existing speaker voiceprint (see section 4, "Speaker
Recognition Similarity Measure - WebSocket API").

Manual assignment: In the first option, the user directly assigns a speaker ID to an anonymous
voiceprint, e.g., after listening to the meeting recording. As a result of this action, the speaker
segmentation of the corresponding meeting is updated. In addition, if the speaker has no existing
voiceprint (or only a zero voiceprint), then this voiceprint is set as his/her voiceprint (if the speaker
already has a non-zero voiceprint, then the anonymous voiceprint can be simply discarded).

Voiceprint verification: In the second option, the user verifies one or many anonymous voiceprints
versus existing speaker voiceprints with a dedicated API. This is done by scoring the voiceprints and
comparing the scores to some threshold to make a decision. If the verification is successful, the
meeting’s segmentation is updated accordingly (afterwards, the anonymous voiceprint can be simply
discarded).

The user that initiates these actions does not have to be the true speaker behind the anonymous
voiceprint, nor the meeting owner. It is up to the application to decide who has the privileges to
initiate such actions.

2. AudioCodes Speaker Recognition Application guidelines Speaker Recognition Similarity Measure - WebSocket API

- 9 -

2.5.2.1 Example Use Case

An example use case: Two speakers are using the same device to connect to an online meeting (a
host speaker who owns the device, and another speaker), but none of them has a prior voiceprint.
Assuming both spoke enough, two anonymous voiceprints are born from that meeting, as the SR
server cannot know who of which is truly the host speaker. On some later meeting, a voiceprint is
created for the host speaker. The user (or the application) can utilize the new voiceprint to verify
who of the two anonymous speakers in the first meeting is the host speaker.

2.5.3 Resolving Corrupted Voiceprints

A speaker’s voiceprint may be corrupted when built on speech segments of the wrong speaker, on
speech segments from multiple speakers, or on non-speech segments (very rare).

Voiceprint corruption causes rejection of the speaker’s speech on the best case (marking his/her
speech segments as anonymous or as unknown), and misidentification on the worst case (speaker
confusion). This situation is unlikely to be resolved by itself, without manual intervention.

The user has two options to resolve this issue: voiceprint-reset, and voiceprint-rebuild. Note that the
SR server does not provide a dedicated API for the latter action.

Voiceprint-reset means discarding all the information stored in the voiceprint, creating an empty
voiceprint for the speaker. This allows the speaker’s voiceprint to have “a fresh start”.

Voiceprint-rebuild essentially refers to voiceprint-reset, followed by normal speaker enrollment.

In addition, in case of significant changes in the conditions (network, acoustic, etc.), it is also
recommended to enroll from scratch (rebuild the voiceprint) in the presence of new conditions.

It is up to the application to decide who has the privileges to initiate such actions.

3. Enroll & Segment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 10 -

3 Enroll & Segment WebSocket API

3.1 Textual message payload to server

◼ Request to start enrollment and segmentation with parameters governing the process in
JSON format.

◼ Request to stop speaker segmentation in JSON format.

◼ Base64 based audio streaming.

To start the enrollment and segmentation process, send action start along parameters related to the
enrollment and with either of the following:

◼ Existing voiceprints (one or more) to use (to accumulate enrollment) of attendees and other
invitees.

◼ Empty (one or more to create new ones from scratch) of attendees and other invitees.

The API supports a process where it includes multiple speaker enrollment with external speaker
activity segments (e.g., from Microsoft Teams) that hints at the speaker identity of a segment. the
output is accompanied with enhanced activity segments in addition to speaker segmentation.

To improve the system performance, the API denotes voiceprints that belong to attendees of the
meeting (given under “voiceprints” array in the API, either previous or empty ones) and invitees
(given under “othersvoiceprints” array in the API, either previous or empty ones).

Invitees include speakers who didn’t attend the meeting according to the online meeting metadata
(not by dominant speaker indication, because there maybe attendees who didn’t speak at all
according to the indication).

Optionally and in addition, an external speech activity segments indication (e.g., segmentation of
words from speech-to-text process or other) could be sent in the API. The diarization algorithm
utilizes them.

The speaker speech language is independent and must be set to "xx-yy" specified through the
parameter "accept-language".

Enrollment and Segmentation use cases:

No. Existing
Voiceprints

(attendees or
invitees)

Speaker
activity

segments

Speaker ID per
segments

External
speech activity

indication
(e.g., from

STT)

Notes

1 + + + -/+ Enrollment is performed according to
external speaker segments that belong to
the speaker ID now being enrolled and
existing voiceprints are enriched.

(Teams use case). External speech activity
indication is optional.

2 - + + -/+ Like case No. 1, but with a new voiceprint
being created to all speakers (one or more).
External speech activity indication is optional

3 -\+ + + -/+ Like case No. 1, but some of the voiceprints
are new voiceprints being created. External
speech activity indication is optional.

3. Enroll & Segment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 11 -

Example:

This example starts a request with the following:

◼ Existing voiceprints (multiple for both attendees and invitees)

◼ Speaker activity segments

◼ Speaker id per segment

◼ Without external speech activity segments

{"action":"start","enrollment-control":1,"accept-language":"xx-

yy","content-type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"152617477","voiceprints":[{"id":"303F5D25-8F2E-

424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26EAAA","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="}],"othersvoiceprints":[{"id":"303F5D2

5-8F2E-424D-990D-A0A0DB26EEE","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26EFFF","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="}],"speechsegments":[{"location":100,"

duration":50,"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-424D-

990D-A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-A0A0DB26E302"},,{"location":350,"duration":30,"id":"303F5D25-

8F2E-424D-990D-A0A0DB26EAAA"}]}

The example above meets the Microsoft Teams use case.

3. Enroll & Segment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 12 -

Example:

This example starts a request with the following:

◼ Empty and existing voiceprints (multiple)

◼ Speaker activity segments

◼ Speaker ID per segment

◼ Without external speech activity segments

{"action":"start","enrollment-control":1,"accept-language":"xx-

yy","content-type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"152617477","voiceprints":[{"id":"303F5D25-8F2E-

424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26EAAA","data":""}],"othersvoiceprints":[{"id":"303F5D25-8F2E-424D-

990D-A0A0DB26E232","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26EDDD","data":""}],"speechsegments":[{"location":100,"duration":50

,"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-424D-

990D-A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-A0A0DB26E302"},,{"location":350,"duration":30,"id":"303F5D25-

8F2E-424D-990D-A0A0DB26EAAA"}]}

3. Enroll & Segment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 13 -

Example:

This example starts a request with the following:

◼ Empty and existing voiceprints (multiple)

◼ Speaker activity segments

◼ Speaker ID per segment

◼ External speech activity segments

{"action":"start","enrollment-control":1,"accept-language":"xx-

yy","content-type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"152617477","voiceprints":[{"id":"303F5D25-8F2E-

424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26EAAA","data":""}],"othersvoiceprints":[{"id":"303F5D25-8F2E-424D-

990D-A0A0DB26E232","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOWFDbC3v4

edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8a5LBdpoEEUe6lM

04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ4ww5B1Q5WbwAAAACg6106

t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMknSvE9wsDF6h1t2l0sIFmyzT8RAJPo

/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzzCxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0i

tGQCUBe2K9ZkfL6A+8ulj/7G6omexo0+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv

/g7Gu6A9/cio6W9yNXW8V3TFuMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26EDDD","data":""}],"speechsegments":[{"location":100,"duration":50

,"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-424D-

990D-A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-A0A0DB26E302"},{"location":350,"duration":30,"id":"303F5D25-

8F2E-424D-990D-

A0A0DB26EAAA"}],"activitysegments":[{"location":51,"duration":48,"label":

 {[{"היה":"location":99,"duration":27,"label"},{"אבל"

Several media types are supported via "content-type":

◼ audio/l16;rate=8000

◼ audio/l16;rate=16000 (recommended)

◼ audio/pcma;rate=8000

◼ audio/pcmu;rate=8000

◼ audio/pcma;rate=16000

◼ audio/pcmu;rate=16000

To process stereo streams, the media type must indicate the number of channels, otherwise, it is
considered as a mono stream.

e.g., audio/PCMU;rate=16000;channels=2

optionally media type may indicate explicitly that the stream is mono by denoting channels is one,
e.g., audio/PCMU;rate=16000;channels=1

if stereo stream was indicated in API, a mix down stereo to mono operation is employed.

segments (speechsegments, speakersegments and activitysegments) in API (command or
message) are given in frames, where frame is 10 [msec].

3. Enroll & Segment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 14 -

3.2 Textual message payload from server

The server notifies of any status change, the final status is always ABORTED, this status indicates
that the process has ended.

You must check the error token field code. Any value different than 0 indicates a problem in
enrollment.

An error code 0 means no error and voiceprint is returned in the response. For logging purposes, the
voiceprint id is given in the JSON field name.

The voiceprint cannot be used in the recognition process before the JSON field state is ENROLLING
or ENROLLED. The score JSON field suggests the voiceprint matureness and if there is sufficient or
insufficient speech for the speaker, to decide if it can be used in segmentation. See Table 1 in
section 2.3 for score ranges ranking and recommendations.

Example: enrollment (status change along a real flow)

{"name":"1d856bd0-04b3-4dc8-bec3-

a85bcdad1d1d","type":"audiocodes.speech.SRESOperation","status":"READY","

cookie":"152617477"}

{"name":"1d856bd0-04b3-4dc8-bec3-

a85bcdad1d1d","type":"audiocodes.speech.SRESOperation","error":{},"status

":"ABORTED","cookie":"152617477","response":{"voiceprints":[{"id":"303F5D

25-8F2E-424D-990D-

A0A0DB26E302","data":"Wu55ekCBNCnLU5+FJD480hBAIKJoIgScyVeae4wnHVr5DSwut13

YlIcp/M0zZs0GwEux3ev6VSLUYvna9GQPilQ0BbIBA1+Xu9sIRe3K6tXiQrzsNcAbhIms3e97

gKIY1S2rDQS78LrNL2z3O7G8xtzu6NUtvIFLUvzswQrF/Y3jv8hHqsyzhibu0OsGZWphFxfeo

ro1rP6WHM5YinlJceWxAWnagNGCLuDbKDQsHS77hUZbxnXHJbzSLLzh5a1KRcwAeXwdcjdNzD

a2rk/9tvH/

==","state":"ENROLLING","score":49}],"speechsegments":[{"location":100,"d

uration":50,"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-424D-

990D-A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-A0A0DB26E302"},{"location":350,"duration":30,"id":"303F5D25-

8F2E-424D-990D-A0A0DB26EAAA"}]

}}

3.3 Packing the voiceprint bytes as payload to server

The binary voiceprint is 64-bit encoded as a string and set to the data field under voiceprints array
in the JSON text message payload. The ID is set by the client using arbitrary string to application
specific requirements.

3. Enroll & Segment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 15 -

3.4 Enrollment parameters

Currently, there is a single parameter governing the enrollment process, namely enrollment-control.
The possible values and behavior are as follows:

◼ “enrollment-control”: 0

Non-automatic resolving of anonymous suspected speaker voiceprints, that must be resolved
beyond the scope of the API.

◼ Otherwise (the default or given explicitly in API command “enrollment-control” : 1)

Automatic resolving of anonymous suspected speaker voiceprints.

Please refer to section 2.5.1 for more information.

The server allows a string value to be passed along with text messages (this is called cookie). The
cookie is present in all subsequent server text messages resulting from the process start message.
You can use it to identify the particular process within multiple asynchronous processes.

The server, for debug purposes only (due to sensitivity of the information), allows you to set:

save-waveform – save the session audio recording as received from the client.

save-voiceprint – save the session last voiceprint being enrolled.

3.5 Binary message payload to server

◼ Streaming audio in multiple chunks. Audio chunk size should equal to or be greater than 210
msec.

◼ When working from files, it is recommended to stream in larger chunks (e.g., 10 sec), to
reduce the transfer time to the server.

◼ Zero bytes payload indicates to the server that the streaming ended (usually from EOF).

3.6 Text message for base64 based audio streaming to server

Streaming audio in multiple chunks utilizing base64 text audio streaming:

 {"action":"stream",

"text":"kdXUUpEQkpmd3ENGEgZiBhZmE2MzQ1MjQyMXRycXdzZA==")

Zero bytes equivalent payload in base64 based audio streaming indicates to the server the streaming
ended (usually from EOF indication)

 {"action":"stream", "text":""})

3. Enroll & Segment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 16 -

3.7 Session Termination

Whenever the application wishes to stop the enrollment process, stop the process by either one of
the methods below:

◼ Issue “zero” bytes message by either:

• Issue zero bytes binary payload.

• Issue empty text json “text” property in base64 text-based audio streaming text
message.

This results in processing all the samples, indicating end of file. Use it when processing from
files.

◼ Send "stop" request - this results in processing the speech samples received already in the
server (without further samples that may be still transmitted)

◼ Send “abort” request – this results in the server stopping immediately without processing the
speech samples any further.

Example: request from client (stop request)

{"action":"stop"," cookie":"enrolling me"}

3.8 Control message payload to server

For long period operations without active transmissions such as enrollment or segmentation of large
audio files being transmitted and waiting a long time for the server to answer (of textual and/or
binary messages between client and server), it is recommended to ping periodically, every few
seconds (see reference in unit test supplied). Ping message to the server, that is defined in the
WebSocket protocol (https://tools.ietf.org/html/rfc6455#section-5.5 - see section 5.5.2 and 5.5.3).
It has been observed in several cases that the WebSocket connection disconnects and is therefore
unable to complete the operation.

https://tools.ietf.org/html/rfc6455#section-5.5

4. Speaker Recognition Similarity Measure - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 17 -

4 Speaker Recognition Similarity Measure -
WebSocket API
Speaker voiceprint similarity WebSocket endpoint

ws[s]://<server IP>:<port>/api/v1/speech: SRSimilarityMeasure

4.1 Understanding Session and Process

In this document, the word Session refers to a WebSocket session, the term Process refers to AC
Speech server task taking place in an asynchronous way. A process is run employing a session as a
means of communication and that session can, once the process is over, be used for executing
another process in the same way. Whenever the term status is mentioned, it refers to process status.

4.2 Textual message payload to server

Request to start speaker voiceprint measurements with parameters governing the process in JSON
format.

To request a speaker similarity measure task, send action start with voiceprints (left) array to be
processed and measure each voiceprint similarity against another voiceprint array (right). the speech
language is independent but is set through the parameter "accept-language" to constant value xx-
yy (reserved for future). After processing as result an array per each voiceprint in left input array is
provided with similarity array information against each of the (right) array input voiceprints with
absolute score (0 to 100) and akin (boolean value), that can be used to connect voiceprints and
segments (e.g., resolving anonymous indicated segments from enrollment and segmentation
process).

The purpose of the "strictness" integer parameter (value varies between 0 to 100) is to ensure
external speakers would not be falsely recognized as a company employee.

when it is known that no external speaker was present in the meeting, "low" value of strictness (less
or equal 75) can be used, If the situation is unclear or an external speaker is present in the meeting,
it is recommended to use "high" value of strictness (greater than 75).

The binary voiceprint is 64-bit encoded as a string and set to the voiceprint field in the JSON text
message payload.

Example (start request)

{ "action": "start", "strictness" : 100, "accept-language": "xx-

yy", "cookie": "558615043", "lvoiceprints": [{ "id": "303F5D25-

8F2E-424D-990D-A0A0DB26E302", "data": "

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA],", "rvoiceprints": [{ "id": "303F5D25-8F2E-424D-990D-

A0A0DB26E302", "data": "

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA==" }, { "id": "780F91D6-4119-4C3F-9D24-ABD24BFD09E1",

"data": "

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA==" }, { "id": "3E5421AC-48D4-419E-BC93-A677403F5813",

"data": "

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc==" }, { "id": "FD8B36AC-9DFE-4C7F-910D-A1A179A373D4",

4. Speaker Recognition Similarity Measure - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 18 -

"data": "

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc==" }] }]}

4.3 Textual message payload from server

From time to time the server notifies the status and results to the client in JSON format. The client
should monitor the status and manage the process accordingly.

Example Speech Recognition task (status change along a real flow)

{"name":"7a43ed65-91a7-4d51-a0ee-

4bcf39954561","type":"audiocodes.speech.SRSMOperation","error":{},

"status":"STARTED","cookie":"558615043"}

{"name":"7a43ed65-91a7-4d51-a0ee-

4bcf39954561","type":"audiocodes.speech.SRSMOperation","status":"R

EADY","cookie":"558615043"}

{"name":"7a43ed65-91a7-4d51-a0ee-

4bcf39954561","type":"audiocodes.speech.SRSMOperation","error":{},

"status":"TERMINATED","cookie":"558615043"}

Example (with results)

{"type":"audiocodes.speech.SRSMOperation","name":"7a43ed65-91a7-

4d51-a0ee-

4bcf39954561","cookie":"558615043","status":"ABORTED","response":{

"similarity":[{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302","scoring":[{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302","score":100.0","akin":true},{"id":"780F91D6-4119-

4C3F-9D24-

ABD24BFD09E1","score":6.842","akin":false},{"id":"3E5421AC-48D4-

419E-BC93-A677403F5813","score":8.454","akin":false}]}]}}

4.4 Status Transitions

As can be observed from the examples above, the server reports process status within each text
message. The status starts as READY right after the process is initialized, it continues with status
STARTED until the process has ended with status ABORTED. In case of failure (some error occurred)
the server changes the status to FAILED.

It is up to the client to stop the speaker similarity process; this is done as described above in
Termination.

The server stops the process upon stop request, and this is done in stages.

Once all is processed, the process status changes to TERMINATED and when the process is halted
completely the status becomes ABORTED provided with the similarity results.

4.5 Control message payload to server

In long period operations without active transmission (as could be the case in enrollment or
segmentation of large audio files being transmitted and awaiting for long period the server to answer
) of textual and\or binary messages in between client and server, it is recommended to send
periodically (Every few seconds, see reference in unit test supplied) Ping message to the server, that
is defined in the WebSocket protocol (https://tools.ietf.org/html/rfc6455#section-5.5 - see section
5.5.2 and 5.5.3). Otherwise, it has been observed in several cases the WebSocket connection is being
disconnected and therefore unable to complete the operation.

https://tools.ietf.org/html/rfc6455#section-5.5

5. Speaker Recognition Diarization - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 19 -

5 Speaker Recognition Diarization - WebSocket
API
Speaker recognition diarization WebSocket endpoint

ws[s]://<server IP>:<port>/api/v1/speech:SRDiarize

5.1 Understanding Session and Process

In this document, the word Session refers to a WebSocket session, the term Process refers to AC
Speech server task taking place in an asynchronous way. A process is run employing a session as a
means of communication and that session can, once the process is over, be used for executing
another process in the same way. Whenever the term status is mentioned, it refers to process status.

5.2 Textual message payload to server

1. Request to start speaker diarization with parameters governing the process in JSON format.

2. Request to stop speaker diarization in JSON format.

3. Base64 based audio streaming.

To request a speaker diarization task, send action start, the speech language is independent but is
set through the parameter "accept-language" to constant value xx-yy (reserved for future).

Optionally, an external speech activity segments indication (e.g. as result of speech-to-text process
or other) could be sent in the API, so the diarization algorithm can utilize them.

Example (start request)

{"action":"start","accept-language":"xx-yy","content-type":"audio/l16;rate=16000","save-
waveform":1,"cookie":"759550161"}

Example (start request with external activity indication)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/L16;rate=16000;channels=1","save-

waveform":0,"cookie":"2110989790","activitysegments":[{"location":

51,"duration":48,"label":"אבל"},{"location":99,"duration":27,"labe

l":"היה"}]}

Several media types are supported via "content-type":

◼ audio/l16;rate=8000

◼ audio/l16;rate=16000 (recommended)

◼ audio/pcma;rate=8000

◼ audio/pcmu;rate=8000

◼ audio/pcma;rate=16000

◼ audio/pcmu;rate=16000

To process stereo streams, the media type must indicate the number of channels, otherwise, it is
considered as a mono stream.

e.g., audio/PCMU;rate=16000;channels=2

optionally media type may indicate explicitly that the stream is mono by denoting channels is one,
e.g., audio/PCMU;rate=16000;channels=1

if stereo stream was indicated in API, a mix down stereo to mono operation is employed.

5. Speaker Recognition Diarization - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 20 -

Textual message payload from server

From time to time the server notifies the status and results to the client in JSON format. The client
should monitor the status and manage the process accordingly.

Example Speech Recognition diarization task (status change along a real flow)

{"cookie":"759550161","name":"6c774a9f-c394-4137-8783-

da181e8f7e7f","status":"READY","type":"audiocodes.speech.SRDOperat

ion","waveform-tag":""}

{"cookie":"759550161","error":{"code":0},"name":"6c774a9f-c394-

4137-8783-

da181e8f7e7f","status":"STARTED","type":"audiocodes.speech.SRDOper

ation","waveform-tag":""}

{"cookie": "759550161","error": {"code": 0},"name": "6c774a9f-

c394-4137-8783-da181e8f7e7f","status":

"TERMINATED","type":"audiocodes.speech.SRDOperation","waveformTag"

: "languages/xx-yy/contexts/srd/2022-08-28/07/2022-08-28.07-18-

38.386-b65d1822.wav"}

Example (with results)

{"cookie": "759550161","error": {"code": 0},"name": "6c774a9f-

c394-4137-8783-da181e8f7e7f","response": {"speakerSegments":

[{"confidence": 0.99,"duration": 200,"id": "Anonymous-Speaker-

2","location": 44},{"confidence": 0.99,"duration": 100,"id":

"Anonymous-Speaker-3","location": 244},{"confidence":

0.99,"duration": 62,"id": "Anonymous-Speaker-1","location":

29546}]},"status": "ABORTED","type":

"audiocodes.speech.SRDOperation","waveform-tag": "languages/xx-

yy/contexts/srd/2022-08-28/07/2022-08-28.07-18-38.386-

b65d1822.wav"}

Binary message payload to server

◼ Streaming audio in multiple chunks. Audio chunks should be in size equal are greater than
210msec.

◼ When working from files it is recommended to stream in larger chunks (e.g. 10sec) to reduce
the transfer time to the server.

◼ Zero bytes payload indicates to the server the streaming ended (usually from EOF indication).

Text message for base64 based audio streaming to server

Streaming audio in multiple chunks utilizing base64 text audio

streaming:

 {"action":"stream",

"text":"kdXUUpEQkpmd3ENGEgZiBhZmE2MzQ1MjQyMXRycXdzZA==")

 Zero bytes equivalent payload in base64 based audio streaming

indicates to the server the streaming ended (usually from EOF

indication)

 {"action":"stream", "text":""})

5. Speaker Recognition Diarization - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 21 -

5.3 Termination

Whenever the application wishes to stop the enrollment process, stop the process by either method:

◼ Issue “zero” bytes message by either:

• Issue zero bytes binary payload.

• Issue empty text json “text” property in base64 text-based audio streaming text
message. This results in processing all the samples, indicating end of file. Use it when
processing from files (this is the common use in recording offline diarization).

◼ Send "stop" request - this results in processing the speech samples received already in the
server (without further samples that may be still transmitted)

◼ Send “abort” request – this results in the server stopping immediately without processing the
speech samples any further.

Example request from client (stop request)

{"action":"stop"," cookie":"diarize me"}

5.4 Status Transitions

As can be observed from the examples above, the server reports process status within each text
message. The status starts as READY right after the process is initialized, it continues with status
STARTED until the process has ended with status ABORTED. In case of failure (some error occurred)
the server changes the status to FAILED.

It is up to the client to stop the speaker diarization process, this is done as described above in
Termination.

The server stops the process upon stop request, and this is done in stages. A brief description of
these stages:

1. Server stops reading samples from binary messages.

2. Server processes all samples that have been already received and accumulated, at the same
time any events are issued as during real-time.

3. Once all samples are processed, the process status changes to TERMINATED and when the
process is halted completely the status becomes ABORTED provided with the diarization
results.

5.5 Control message payload to server

In long period operations without active transmission (as could be the case in diarization of large
audio files being transmitted and awaiting for long period the server to answer) of textual and\or
binary messages in between client and server, it is recommended to send periodically (Every few
seconds, see reference in unit test supplied) Ping message to the server, that is defined in the
WebSocket protocol (https://tools.ietf.org/html/rfc6455#section-5.5 - see section 5.5.2 and 5.5.3).
Otherwise, it has been observed in several cases the WebSocket connection is being disconnected
and therefore unable to complete the operation.

https://tools.ietf.org/html/rfc6455#section-5.5

6. Speaker Recognition Enrollment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 22 -

6 Speaker Recognition Enrollment WebSocket API

Speaker segmentation enrollment WebSocket endpoint

ws[s]://<server IP>:<port>/api/v1/speech:SREnroll

6.1 Textual message payload to server

◼ Request to start enrollment with parameters governing the process in JSON format.

◼ Request to stop speaker segmentation in JSON format.

◼ Base64 based audio streaming.

To start the enrollment process, send action start along parameters related to the enrollment and
with either of the following:

◼ Existing voiceprints (one or more) to use (to accumulate enrollment)

◼ Empty (one or more to create new ones from scratch).

Multiple speaker enrollment is supported only with external speech activity segments to hint the
speaker identity of a segment.

Additionally, external speaker activity segments can be optionally set (e.g., from Microsoft Teams).
Otherwise, an internal algorithm is being used to find speech activity. in addition, if provided as
input, the enrollment output is accompanied with enhanced activity segments as well.

Optionally and in addition, an additional external speech activity segments indication (e.g., as result
of speech to text process or other) could be sent in the API, so enrollment algorithm could utilize
them.

The speaker speech language is independent and must be set to fixed to "xx-yy" specified through
the parameter "accept-language".

6. Speaker Recognition Enrollment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 23 -

Enrollment use cases:

No. Existing
Voiceprints

Speech
activity

segments

Speaker id
per

segment

Notes

1 + + + Enrollment is performed according to external
segments that belongs to the speaker id now
being enrolled and existing voiceprints are
enriched.

(Teams use case)

2 + + - Like use case 1, but the external segments are
implicitly assigned to the speaker id now being
enrolled and existing voiceprint is enriched.
Applicable only for the use case of single speaker
that resides in the audio and being enrolled.

3 + - - Enrollment is performed on all utterance and
existing voiceprint is enriched. Applicable only for
the use case of single speaker that resides in the
audio and being enrolled.

4 - + + Like case No. 1, but with a new voiceprint being
created to all speakers (one or more).

5 -\+ + + Like case No. 1, but some of the voiceprints are
new voiceprints being created.

6 - + - Like case No. 2, but with a new voiceprint being
created. Applicable only for the use case of single
speaker that resides in the audio and being
enrolled.

7 - - - Like case No. 3, but with a new voiceprint being
created. Applicable only for the use case of single
speaker that resides in the audio and being
enrolled.

6. Speaker Recognition Enrollment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 24 -

Example (start request with existing voiceprints (multiple) and with speech activity segments and
with speaker id per segment)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"152617477","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOW

FDbC3v4edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8

a5LBdpoEEUe6lM04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ

4ww5B1Q5WbwAAAACg6106t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMkn

SvE9wsDF6h1t2l0sIFmyzT8RAJPo/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzz

CxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0itGQCUBe2K9ZkfL6A+8ulj/7G6omexo0

+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv/g7Gu6A9/cio6W9yNXW8V3TF

uMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-A0A0DB26EAAA","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOW

FDbC3v4edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8

a5LBdpoEEUe6lM04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ

4ww5B1Q5WbwAAAACg6106t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMkn

SvE9wsDF6h1t2l0sIFmyzT8RAJPo/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzz

CxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0itGQCUBe2K9ZkfL6A+8ulj/7G6omexo0

+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv/g7Gu6A9/cio6W9yNXW8V3TF

uMvteO6w=="}],"speechsegments":[{"location":100,"duration":50,"id"

:"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},{"location":350,"duration":30,"id":"303F5D25-8F2E-

424D-990D-A0A0DB26EAAA"}]}

The example above meets the Microsoft Teams use case.

6. Speaker Recognition Enrollment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 25 -

Example (start request with existing voiceprints (multiple) and with speech activity segments and
with speaker id per segment and with external activity indication)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"152617477","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOW

FDbC3v4edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8

a5LBdpoEEUe6lM04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ

4ww5B1Q5WbwAAAACg6106t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMkn

SvE9wsDF6h1t2l0sIFmyzT8RAJPo/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzz

CxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0itGQCUBe2K9ZkfL6A+8ulj/7G6omexo0

+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv/g7Gu6A9/cio6W9yNXW8V3TF

uMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-A0A0DB26EAAA","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOW

FDbC3v4edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8

a5LBdpoEEUe6lM04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ

4ww5B1Q5WbwAAAACg6106t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMkn

SvE9wsDF6h1t2l0sIFmyzT8RAJPo/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzz

CxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0itGQCUBe2K9ZkfL6A+8ulj/7G6omexo0

+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv/g7Gu6A9/cio6W9yNXW8V3TF

uMvteO6w=="}],"speechsegments":[{"location":100,"duration":50,"id"

:"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},{"location":350,"duration":30,"id":"303F5D25-8F2E-

424D-990D-A0A0DB26EAAA"}]}

Example (start request with empty and existing voiceprints (multiple) and with speech activity
segments and with speaker id per segment)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"152617477","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOW

FDbC3v4edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8

a5LBdpoEEUe6lM04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ

4ww5B1Q5WbwAAAACg6106t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMkn

SvE9wsDF6h1t2l0sIFmyzT8RAJPo/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzz

CxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0itGQCUBe2K9ZkfL6A+8ulj/7G6omexo0

+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv/g7Gu6A9/cio6W9yNXW8V3TF

uMvteO6w=="},{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26EAAA","data":""}],"speechsegments":[{"location":100,"durat

ion":50,"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},{"location":350,"duration":30,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26EAAA"}],"activitysegments":[{"location":51,"duration":48,"

label":"

ל אב "},{"location":99,"duration":27,"label":"היה "}] }

The example above meets the Microsoft Teams use case.

6. Speaker Recognition Enrollment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 26 -

Example (start request with existing voiceprint and with speech activity segments and without
speaker id per segment)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"152617477","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOW

FDbC3v4edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8

a5LBdpoEEUe6lM04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ

4ww5B1Q5WbwAAAACg6106t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMkn

SvE9wsDF6h1t2l0sIFmyzT8RAJPo/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzz

CxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0itGQCUBe2K9ZkfL6A+8ulj/7G6omexo0

+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv/g7Gu6A9/cio6W9yNXW8V3TF

uMvteO6w=="}],"speechsegments":[{"location":100,"duration":50},{"l

ocation":200,"duration":40},{"location":300,"duration":30}]}

Example (start request with existing voiceprint and without speech activity segments)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"200087927","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

dHBsAGABAABTKGlpKUJCAAEAAAABAAAAgAAAAIU7CKxZmb/tDLaHnXgTIUesaULPOW

FDbC3v4edCCkCvAElU5P35a4BvRvT9RdQ7qiBQzAsUkODnuJI4hms4qTsQZMcCjMU8

a5LBdpoEEUe6lM04lcJR/hUaJ1hiTzgqn4tekX4atjqFzlzJx2dbsDpgjATIdUmxPQ

4ww5B1Q5WbwAAAACg6106t7OtKZtFQRwtl3WkLdVA5YmFXc+KLE7xs+M2dQ4F7mMkn

SvE9wsDF6h1t2l0sIFmyzT8RAJPo/09qwf36cOrwm56yShvMrixbfUOBTY73o9ehzz

CxS8BfoaEEA+oAIpPIiR3H0A68ajLC5dS0itGQCUBe2K9ZkfL6A+8ulj/7G6omexo0

+jAdUSURhya5wVmyUCwr4QLhN29HjFVORhZItEpBqv/g7Gu6A9/cio6W9yNXW8V3TF

uMvteO6w=="}]}

Example (start request with empty one and without speech activity segments)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"200087927","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":""}]}

Several media types are supported via "content-type":

◼ audio/l16;rate=8000

◼ audio/l16;rate=16000 (recommended)

◼ audio/pcma;rate=8000

◼ audio/pcmu;rate=8000

◼ audio/pcma;rate=16000

◼ audio/pcmu;rate=16000

To process stereo streams, the media type must indicate the number of channels, otherwise, it is
considered as a mono stream.

e.g., audio/PCMU;rate=16000;channels=2

optionally media type may indicate explicitly that the stream is mono by denoting channels is one,
e.g., audio/PCMU;rate=16000;channels=1

if stereo stream was indicated in API, a mix down stereo to mono operation is employed.

6. Speaker Recognition Enrollment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 27 -

6.2 Packing the voiceprint bytes as payload to server

The binary voiceprint is 64-bit encoded as a string and set to the data field under voiceprints array
in the JSON text message payload. The id is set by the client using arbitrary string to application
specific requirements.

6.3 Enrollment parameters

There are currently no parameters governing the enrollment process.

The server allows a string value to be passed along with text messages, this is called cookie. The
cookie is present in all subsequent server text messages resulting from the process start message.
You can use it to identify the particular process within multiple asynchronous processes.

The server, for debug purposes only (due to sensitivity of the information), allows setting:

save-waveform – save the session audio recording as received from the client.

save-voiceprint – save the session last voiceprint being enrolled.

6.4 Binary message payload to server

◼ Streaming audio in multiple chunks. Audio chunks should be in size equal are greater than
210msec.

◼ When working from files it is recommended to stream in larger chunks (e.g. 10sec) to reduce
the transfer time to the server.

◼ Zero bytes payload indicates to the server the streaming ended (usually from EOF indication).

6.5 Text message for base64 based audio streaming to server

Streaming audio in multiple chunks utilizing base64 text audio streaming:

{"action":"stream",

"text":"kdXUUpEQkpmd3ENGEgZiBhZmE2MzQ1MjQyMXRycXdzZA==")

Zero bytes equivalent payload in base64 based audio streaming indicates to the server the streaming
ended (usually from EOF indication)

{"action":"stream", "text":""})

6.6 Termination

Whenever the application wishes to stop the enrollment process, stop the process by either one of
the methods below:

◼ Issue “zero” bytes message by either:

• Issue zero bytes binary payload.

• Issue empty text json “text” property in base64 text-based audio streaming text
message. this results in processing all the samples, indicating end of file. Use it when
processing from files.

◼ Send "stop" request - this results in processing the speech samples received already in the
server (without further samples that may be still transmitted)

◼ Send “abort” request – this results in the server stopping immediately without processing the
speech samples any further.

6. Speaker Recognition Enrollment WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 28 -

Example request from client (stop request)

{"action":"stop"," cookie":"enrolling me"}

6.7 Textual message payload from server

The server notifies of any status change, the final status is always ABORTED, this status indicates
that the process has ended.

You must check the error token field code. Any value different than 0 indicates a problem in
enrollment.

An error code 0 means no error and voiceprint is returned in the response. For logging purposes, the
voiceprint id is given in the JSON field name.

The voiceprint cannot be used in recognition process before the JSON field state is ENROLLING or
ENROLLED. The score JSON field suggests about the voiceprint matureness and if there is enough or
insufficient speech for the speaker, to decide if it can be used in segmentation. See application
guidelines documentation for score ranges ranking and recommendation.

Example enrollment (status change along a real flow)

{"name":"1d856bd0-04b3-4dc8-bec3-

a85bcdad1d1d","type":"audiocodes.speech.SREOperation","status":"RE

ADY","cookie":"152617477"}

{"name":"1d856bd0-04b3-4dc8-bec3-

a85bcdad1d1d","type":"audiocodes.speech.SREOperation","error":{},"

status":"ABORTED","cookie":"152617477","response":{"voiceprints":[

{"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302","data":"Wu55ekCBNCnLU5+FJD480hBAIKJoIgScyVeae4wnHVr5

DSwut13YlIcp/M0zZs0GwEux3ev6VSLUYvna9GQPilQ0BbIBA1+Xu9sIRe3K6tXiQr

zsNcAbhIms3e97gKIY1S2rDQS78LrNL2z3O7G8xtzu6NUtvIFLUvzswQrF/Y3jv8hH

qsyzhibu0OsGZWphFxfeoro1rP6WHM5YinlJceWxAWnagNGCLuDbKDQsHS77hUZbxn

XHJbzSLLzh5a1KRcwAeXwdcjdNzDa2rk/9tvH/

==","state":"ENROLLING","score":49}],"speechsegments":[{"location"

:100,"duration":50,"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302"},{"location":200,"duration":40,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},{"location":300,"duration":30,"id":"303F5D25-8F2E-

424D-990D-

A0A0DB26E302"},,{"location":350,"duration":30,"id":"303F5D25-8F2E-

424D-990D-A0A0DB26EAAA"}]

}}

6.8 Control message payload to server

In long period operations without active transmission (as could be the case in enrollment or
segmentation of large audio files being transmitted and awaiting for long period the server to answer
) of textual and\or binary messages in between client and server, it is recommended to send
periodically (Every few seconds, see reference in unit test supplied) Ping message to the server, that
is defined in the WebSocket protocol (https://tools.ietf.org/html/rfc6455#section-5.5 - see section
5.5.2 and 5.5.3). Otherwise, it has been observed in several cases the WebSocket connection is being
disconnected and therefore unable to complete the operation.

https://tools.ietf.org/html/rfc6455#section-5.5

7. Speaker Recognition Segmentation - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 29 -

7 Speaker Recognition Segmentation - WebSocket
API
Speaker segmentation recognition WebSocket endpoint

ws[s]://<server IP>:<port>/api/v1/speech: SRSegment

7.1 Understanding Session and Process

In this document, the word Session refers to a WebSocket session, the term Process refers to AC
Speech server task taking place in an asynchronous way. A process is run employing a session as a
means of communication and that session can, once the process is over, be used for executing
another process in the same way. Whenever the term status is mentioned, it refers to process status.

7.2 Textual message payload to server

◼ Request to start speaker segmentation with parameters governing the process in JSON
format.

◼ Request to stop speaker segmentation in JSON format.

◼ Base64 based audio streaming.

To request a speaker segmentation task, send action start with voiceprints array specifying the
speakers that may be found in audio (please follow application guidelines documentation for
voiceprints matureness, the application is responsible to manage the use of voiceprints according to
their score and ranking to ensure best performance), the speech language is independent but is set
through the parameter "accept-language" to constant value xx-yy (reserved for future).

Additionally, external speech activity segments can be optionally set (e.g. from speech-to-text word
segmentation or by other means). Otherwise, an internal algorithm is being used to detect speech
activity.

The binary voiceprint is 64-bit encoded as a string and set to the voiceprint field in the JSON text
message payload.

7. Speaker Recognition Segmentation - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 30 -

Example (start request and with speech activity segments and with speaker segmentation
information)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"558615043","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA=="},{"id":"780F91D6-4119-4C3F-9D24-ABD24BFD09E1","data":"

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA=="},{"id":"3E5421AC-48D4-419E-BC93-A677403F5813","data":"

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc=="},{"id":"FD8B36AC-9DFE-4C7F-910D-A1A179A373D4","data":"

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc=="}],"speechsegments":[{"location":100,"duration":50,"id":"

780F91D6-4119-4C3F-9D24-

ABD24BFD09E1"},{"location":200,"duration":40,"id":"FD8B36AC-9DFE-

4C7F-910D-

A1A179A373D4"},{"location":300,"duration":30,"id":"FD8B36AC-9DFE-

4C7F-910D-A1A179A373D4"}]}

The example above meets the Microsoft Teams use case.

Example (start request and with speech activity segments and without speaker segmentation
information)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"558615043","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA=="},{"id":"780F91D6-4119-4C3F-9D24-ABD24BFD09E1","data":"

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA=="},{"id":"3E5421AC-48D4-419E-BC93-A677403F5813","data":"

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc=="},{"id":"FD8B36AC-9DFE-4C7F-910D-A1A179A373D4","data":"

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc=="}],"speechsegments":[{"location":100,"duration":50},{"loc

ation":200,"duration":40},{"location":300,"duration":30}]}

7. Speaker Recognition Segmentation - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 31 -

Example (start request and without speech activity segments)

{"action":"start","accept-language":"xx-yy","content-

type":"audio/l16;rate=16000","save-waveform":1,"save-

voiceprint":1,"cookie":"558615043","voiceprints":[{"id":"303F5D25-

8F2E-424D-990D-A0A0DB26E302","data":"

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA=="},{"id":"780F91D6-4119-4C3F-9D24-ABD24BFD09E1","data":"

AAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eIiJmZkAABERIiIzM0

REVVVmZnd3iIiZmZAAARESIiMzNERFVVZmZ3d4iImZmQAAEREiIjMzRERVVWZmd3eI

iJmZkA=="},{"id":"3E5421AC-48D4-419E-BC93-A677403F5813","data":"

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc=="},{"id":"FD8B36AC-9DFE-4C7F-910D-A1A179A373D4","data":"

ZwiXE4cxCDlwlmJ3FYlwKXdYNyEJVwgpeJcgaJJwiWcpAnq814OYk3YIOXY5djdjhj

l2OXZnhieGJ4lafhjklahjklhaklj25j4klkjaflljfahfja2hClnSJdolziXCXhpg

3iWOZc=="}]}

Several media types are supported via "content-type":

◼ audio/l16;rate=8000

◼ audio/l16;rate=16000 (recommended)

◼ audio/pcma;rate=8000

◼ audio/pcmu;rate=8000

◼ audio/pcma;rate=16000

◼ audio/pcmu;rate=16000

To process stereo streams, the media type must indicate the number of channels, otherwise, it is
considered as a mono stream.

e.g., audio/PCMU;rate=16000;channels=2

optionally media type may indicate explicitly that the stream is mono by denoting channels is one,
e.g., audio/PCMU;rate=16000;channels=1

if stereo stream was indicated in API, a mix down stereo to mono operation is employed.

7. Speaker Recognition Segmentation - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 32 -

7.3 Textual message payload from server

From time to time the server notifies the status and results to the client in JSON format. The client
should monitor the status and manage the process accordingly.

Example Speech Recognition task (status change along a real flow)

{"name":"7a43ed65-91a7-4d51-a0ee-

4bcf39954561","type":"audiocodes.speech.SRSOperation","error":{},"

status":"STARTED","cookie":"558615043"}

{"name":"7a43ed65-91a7-4d51-a0ee-

4bcf39954561","type":"audiocodes.speech.SRSOperation","status":"RE

ADY","cookie":"558615043"}

{"name":"7a43ed65-91a7-4d51-a0ee-

4bcf39954561","type":"audiocodes.speech.SRSOperation","error":{},"

status":"TERMINATED","cookie":"558615043"}

Example (with results)

{"name":"a9c9ef34-7737-44fd-98e8-

ba4a36856537","type":"audiocodes.speech.SRSOperation","error":{},"

status":"ABORTED","cookie":"430088109","response":{"speakersegment

s":[{"location":42,"duration":24,"id":"303F5D25-8F2E-424D-990D-

A0A0DB26E302","confidence":0.8123},{"location":78,"duration":32,"i

d":"780F91D6-4119-4C3F-9D24-ABD24BFD09E1","confidence":0.5124}]}}

7.4 Binary message payload to server

◼ Streaming audio in multiple chunks. Audio chunks should be in size equal are greater than
210msec.

◼ When working from files it is recommended to stream in larger chunks (e.g. 10sec) to reduce
the transfer time to the server.

◼ Zero bytes payload indicates to the server the streaming ended (usually from EOF indication).

7.5 Text message for base64 based audio streaming to server

Streaming audio in multiple chunks utilizing base64 text audio

streaming:

 {"action":"stream",

"text":"kdXUUpEQkpmd3ENGEgZiBhZmE2MzQ1MjQyMXRycXdzZA==")

 Zero bytes equivalent payload in base64 based audio streaming

indicates to the server the streaming ended (usually from EOF

indication)

 {"action":"stream", "text":""})

7. Speaker Recognition Segmentation - WebSocket API Speaker Recognition Similarity Measure - WebSocket API

- 33 -

7.6 Termination

Whenever the application wishes to stop the enrollment process, stop the process by either method:

◼ Issue “zero” bytes message by either:

• Issue zero bytes binary payload.

• Issue empty text json “text” property in base64 text-based audio streaming text
message.

◼ this results in processing all the samples, indicating end of file. Use it when processing from
files (this is the common use in meetings offline segmentation).

◼ Send "stop" request - this results in processing the speech samples received already in the
server (without further samples that may be still transmitted)

◼ Send “abort” request – this results in the server stopping immediately without processing the
speech samples any further.

Example request from client (stop request)

{"action":"stop"," cookie":"segment me"}

7.7 Status Transitions

As can be observed from the examples above, the server reports process status within each text
message. The status starts as READY right after the process is initialized, it continues with status
STARTED until the process has ended with status ABORTED. In case of failure (some error occurred)
the server changes the status to FAILED.

It is up to the client to stop the speaker segmentation process; this is done as described above in
Termination.

The server stops the process upon stop request, and this is done in stages. A brief description of
these stages:

1. Server stops reading samples from binary messages.

2. Server processes all samples that have been already received and accumulated, at the same
time any events are issued as during real-time.

3. Once all samples are processed, the process status changes to TERMINATED and when the
process is halted completely the status becomes ABORTED provided with the segmentation
results.

7.8 Control message payload to server

In long period operations without active transmission (as could be the case in enrollment or
segmentation of large audio files being transmitted and awaiting for long period the server to answer
) of textual and\or binary messages in between client and server, it is recommended to send
periodically (Every few seconds, see reference in unit test supplied) Ping message to the server, that
is defined in the WebSocket protocol (https://tools.ietf.org/html/rfc6455#section-5.5 - see section
5.5.2 and 5.5.3). Otherwise, it has been observed in several cases the WebSocket connection is being
disconnected and therefore unable to complete the operation.

https://tools.ietf.org/html/rfc6455#section-5.5

8. AudioCodes Speech REST API Speaker Recognition Similarity Measure - WebSocket API

- 34 -

8 AudioCodes Speech REST API

8.1 Offline Diarization API

The <Speech_Server_IP>/v1/speech:diarize URL when used with the POST method,

provides the ability for the transcription client to send a request to the server to transcribe and
diarize an audio file.

REST Resource

<Speech_Server_IP>/v1/speech:diarize

HTTP Method

POST

Content-Type

application/json

Path Variables

Attribute Type Description

Request Message Body

8. AudioCodes Speech REST API Speaker Recognition Similarity Measure - WebSocket API

- 35 -

Fields Description

String : audio-file

String: content-type

String: cookie

Integer: diarization-gap

Integer: save-waveform

Array: word-segments (see below - optional)

audio-file base64 audio file

content-type mime type of the audio-file one of:

◼ audio/l16;rate=8000;channels=1
◼ audio/l16;rate=16000;channels=1
◼ audio/PCMA;rate=8000;channels=1
◼ audio/PCMA;rate=16000;channels=1
◼ audio/PCMU;rate=8000;channels=1
◼ audio/PCMU;rate=16000;channels=1
◼ audio/l16;rate=8000;channels=2
◼ audio/l16;rate=16000;channels=2
◼ audio/PCMA;rate=8000;channels=2
◼ audio/PCMA;rate=16000;channels=2
◼ audio/PCMU;rate=8000;channels=2
◼ audio/PCMU;rate=16000;channels=2

cookie optional application session labeling

diarization-gap an optional parameter that
governs merge segments of same speaker, where
gap is less than the parameter given in [msec].
the default value is 20000 [msec].

save-waveform an optional parameter that
enables (value 1) or disable (value 0) waveform
save at server side (usually used for debugging
purposes)

word-segments an optional array of objects with
word segmentation in sequence (e.g. output of
speech to text process) introduced as input to the
diarization algorithm

word-segments Array: Object

Object word text of the word

location word begins in frames (frame equals
10msec)

duration word duration in frames (frame equals
10msec)

confidence word confidence between 0 to 1

8. AudioCodes Speech REST API Speaker Recognition Similarity Measure - WebSocket API

- 36 -

Reply Content-Type

application/json; charset=utf-8

Reply Message Body

Entity Fields Description

transcription Array : objectarray1 (see below)

 String: cookie

 String: waveform-tag

cookie application session
labeling

waveform-tag uri path to server
waveform recording. the entity
appears only if save-waveform
was enabled.

objectarray1 String: id

Int: location

Int: duration

String: text

Array: words (see below)

id diarization speaker label

location frame index where
diarized speaker segment starts
in audio frames (x10msec)

duration period of diarized
speaker lasts in audio frames
(x10msec)

text speech to text words
sequence recognized under the
diarized segment

words speech to text words
detailed information including
location, duration, confidence,
and text

Words Array : objectarray2 (see below)

objectarray2 String: word

Int: location

Int: duration

Float: confidence

word the text representing the
word under the segment

location frame index where
word starts in audio frames
(x10msec)

duration period of word lasts in
audio frames (x10msec)

confidence word level
confidence score in the range
0.0 to 1.0

HTTP Response

◼ 200 OK

8. AudioCodes Speech REST API Speaker Recognition Similarity Measure - WebSocket API

- 37 -

8.2 Offline Diarize API response example (with word-segments
as input)

{

 "transcription": [

 {

 "id": "Anonymous-Speaker-1",

 "location": 250,

 "duration": 170,

 "text": "word1 word2 word3",

 "words": [

 {

 "word": "word1",

 "location": 250,

 "duration": 40,

 "confidence": 0.5854

 },

 {

 "word": "word2",

 "location": 320,

 "duration": 50,

 "confidence": 0.6854

 },

 {

 "word": "word3",

 "location": 370,

 "duration": 30,

 "confidence": 0.7854

 }

]

 },

 {

 "id": "Anonymous-Speaker-2",

 "location": 800,

 "duration": 250,

 "text": "word3 word4 word5",

 "words": [

 {

 "word": "word3",

 "location": 800,

 "duration": 80,

 "confidence": 0.2854

 },

 {

 "word": "word4",

 "location": 880,

 "duration": 60,

 "confidence": 0.4454

 },

 {

 "word": "word5",

 "location": 1000,

 "duration": 30,

 "confidence": 0.9854

 }

]

 }

]

"cookie" : "application defined cookie"

}

 International Headquarters
1 Hayarden Street,
Airport City
Lod 7019900, Israel
Tel: +972-3-976-4000
Fax: +972-3-976-4040

AudioCodes Inc.
80 Kingsbridge Rd
Piscataway, NJ 08854, USA
Tel: +1-732-469-0880
Fax: +1-732-469-2298

Contact us: https://www.audiocodes.com/corporate/offices-worldwide
Website: https://www.audiocodes.com

©2024 AudioCodes Ltd. All rights reserved. AudioCodes, AC, HD VoIP, HD VoIP Sounds Better, IPmedia,
Mediant, MediaPack, What’s Inside Matters, OSN, SmartTAP, User Management Pack, VMAS, VoIPerfect,
VoIPerfectHD, Your Gateway To VoIP, 3GX, VocaNom, AudioCodes One Voice, AudioCodes Meeting
Insights, and AudioCodes Room Experience are trademarks or registered trademarks of AudioCodes
Limited. All other products or trademarks are property of their respective owners. Product specifications
are subject to change without notice.

Document #: LTRT-26013

https://www.audiocodes.com/corporate/offices-worldwide
https://www.audiocodes.com/

	API for AudioCodes Transcription Services - Speaker Recognition APIs v0.12
	Table of Contents
	Notice
	Customer Support
	Stay in the Loop with AudioCodes
	Abbreviations and Terminology
	Related Documentation
	Document Revision Record
	Documentation Feedback

	1 Introduction
	2 AudioCodes Speaker Recognition Application guidelines
	2.1 Introduction & Considerations
	2.1.1 General Considerations

	2.2 Enrollment and Segmentation Flow Charts
	2.2.1 I/O Diagram
	2.2.2 Definitions
	2.2.3 Configurations
	2.2.4 Application Flow

	2.3 Enrollment Management
	2.4 Speaker Segmentation Guidelines
	2.5 Voiceprint Management
	2.5.1 Automatic ID Assignment Mode
	2.5.1.1 Use Cases

	2.5.2 Resolving Anonymous Voiceprints
	2.5.2.1 Example Use Case

	2.5.3 Resolving Corrupted Voiceprints

	3 Enroll & Segment WebSocket API
	3.1 Textual message payload to server
	3.2 Textual message payload from server
	3.3 Packing the voiceprint bytes as payload to server
	3.4 Enrollment parameters
	3.5 Binary message payload to server
	3.6 Text message for base64 based audio streaming to server
	3.7 Session Termination
	3.8 Control message payload to server

	4 Speaker Recognition Similarity Measure - WebSocket API
	4.1 Understanding Session and Process
	4.2 Textual message payload to server
	4.3 Textual message payload from server
	4.4 Status Transitions
	4.5 Control message payload to server

	5 Speaker Recognition Diarization - WebSocket API
	5.1 Understanding Session and Process
	5.2 Textual message payload to server
	5.3 Termination
	5.4 Status Transitions
	5.5 Control message payload to server

	6 Speaker Recognition Enrollment WebSocket API
	6.1 Textual message payload to server
	6.2 Packing the voiceprint bytes as payload to server
	6.3 Enrollment parameters
	6.4 Binary message payload to server
	6.5 Text message for base64 based audio streaming to server
	6.6 Termination
	6.7 Textual message payload from server
	6.8 Control message payload to server

	7 Speaker Recognition Segmentation - WebSocket API
	7.1 Understanding Session and Process
	7.2 Textual message payload to server
	7.3 Textual message payload from server
	7.4 Binary message payload to server
	7.5 Text message for base64 based audio streaming to server
	7.6 Termination
	7.7 Status Transitions
	7.8 Control message payload to server

	8 AudioCodes Speech REST API
	8.1 Offline Diarization API
	8.2 Offline Diarize API response example (with word-segments as input)

