Security Guidelines

AudioCodes One Voice Operations Center (OVOC)

OVOC

Security Guidelines

Version 8.2

Notice

Information contained in this document is believed to be accurate and reliable at the time of printing. However, due to ongoing product improvements and revisions, AudioCodes cannot guarantee accuracy of printed material after the Date Published nor can it accept responsibility for errors or omissions. Updates to this document can be downloaded from https://www.audiocodes.com/library/technical-documents.

This document is subject to change without notice.

Date Published: June-19-2024

WEEE EU Directive

Pursuant to the WEEE EU Directive, electronic and electrical waste must not be disposed of with unsorted waste. Please contact your local recycling authority for disposal of this product.

Security Vulnerabilities

All security vulnerabilities should be reported to vulnerability@audiocodes.com.

Customer Support

Customer technical support and services are provided by AudioCodes or by an authorized AudioCodes Service Partner. For more information on how to buy technical support for AudioCodes products and for contact information, please visit our website at https://www.audiocodes.com/services-support/maintenance-and-support.

Documentation Feedback

AudioCodes continually strives to produce high quality documentation. If you have any comments (suggestions or errors) regarding this document, please fill out the Documentation Feedback form on our website at https://online.audiocodes.com/documentation-feedback.

Stay in the Loop with AudioCodes

Related Documentation

Document Name
OVOC Documents
Migration from EMS and SEM Ver. 7.2 to One Voice Operations Center
One Voice Operations Center IOM Manual
One Voice Operations Center Product Description
One Voice Operations Center User's Manual
Device Manager Pro Administrator's Manual
One Voice Operations Center Alarms Monitoring Guide
One Voice Operations Center Performance Monitoring Guide
One Voice Operations Center Security Guidelines
One Voice Operations Center Integration with Northbound Interfaces
Device Manager for Third-Party Vendor Products Administrator's Manual
Device Manager Deployment Guide
Device Manager Pro Administrator's Manual
ARM User's Manual
Documents for Managed Devices
Mediant 500 MSBR User's Manual
Mediant 500L MSBR User's Manual
Mediant 500Li MSBR User's Manual
Mediant 500L Gateway and E-SBC User's Manual
Mediant 800B Gateway and E-SBC User's Manual
Mediant 800 MSBR User's Manual
Mediant 1000B Gateway and E-SBC User's Manual
Mediant 1000B MSBR User's Manual

Document Name
Mediant 2600 E-SBC User's Manual
Mediant 3000 User's Manual
Mediant 4000 SBC User's Manual
Mediant 9000 SBC User's Manual
Mediant Software SBC User's Manual
Microsoft Teams Direct Routing SBA Installation and Maintenance Manual
Mediant 800B/1000B/2600B SBA for Skype for Business Installation and Maintenance Manual
Fax Server and Auto Attendant IVR Administrator's Guide
Voca Administrator's Guide
VoiceAl Connect Installation and Configuration Manual

Document Revision Record

LTRT	Description
94058	■ Updates for Version 8.2: ✓ Updated Section: Changing Database default
	password; Configuring Enterprise Firewall; Managing Multiple Interfaces ✓ Added Sections: Log4j; Operator Passwords
	✓ Removed Section: Firewall Rules for Service Provider Cluster
94059	Updates for Version 8.2.1000: Updated Section: OVOC Server Data Encryption
94062	Update to Section Combined Authentication Mode.
94063	Updates to Firewall tables for OVOC Device Manager ports; Establishing Connections for Device Manager devices.
94064	Further updates to Firewall tables for OVOC Device Manager ports; Establishing Connections for Device

LTRT	Description
	Manager devices.
94065	Further updates to Firewall tables for OVOC Device Manager ports; Establishing Connections for Device Manager devices; OVOC and Floating License Service Connections
94066	Updates to OVOC Cloud Architecture Mode; Establishing Connections for Device Manager Devices; Device Manager Pro Web Client; Firewall diagram; Northbound Interfaces Flows table

Table of Contents

1	Introduction	. 1
	AudioCodes OVOC Security Solution	. 1
Pa	rt I	2
Se	curing the OVOC Server Platform	2
2	Step 1: Implementing Server Security Settings	
_		
	Inbuilt Features Backporting Security Fixes	
	HTTP X-Header Security Tags	
	Changing the OS Password	
	Changing Default Database Password	
	OVOC Server Data Encryption	
	Provisioning SSH Options to Access OVOC Server	
	Integrity Testing	
	File Integrity Checker	
	Software Integrity Checker (AIDE) and Pre-linking	. 6
	Web Application Firewall (WAF)	. 7
	Transferring Files Using SFTP / SCP	7
	System Profiles	7
	Advanced Security Options	. 7
	Auditd	
	Network Options	
	NTP and Clock Synchronization	
	Apache Log4j	
Pa	rt II	10
Se	curing the Application	10
3	Step 2: Managing OVOC Users	11
	Authenticating OVOC Users with External User Databases	11
	Microsoft Azure	
	LDAP Server	.11
	RADIUS Server	
	External Authentication and Multitenancy	
	Combined Authentication Mode	
	Configuring Operator Authentication with SAML	
	Provisioning Operator Security	
	Resource/Entity Management Operator Type	
	Operator Passwords	
	Privacy Mode	
Pa		20
	[V III	~0

Se	ecuring the Communication	20
4	Step 3: Configuring Enterprise Firewall	21
	Firewall Rules for Cloud Architecture Mode (WebSocket Tunnel)	26
	Firewall Rules for NAT Configuration Options	26
	Firewall Rules for Service Provider with Single Node	27
5	Step 4: Securing SNMP Interface Access (OVOC)	30
	Securing Trap Forwarding over SNMPv3	30
6	Step 5: Implementing X.509 Authentication	31
	Types of Certificates	31
	Multiple TLS Contexts for Device Connections	31
	Recommended Workflow	32
	OVOC Client and Servers	
	Devices	
	External Connections	
	Enabling HTTPS SSL TLS Connections	
	OVOC Web Client	
	Device Manager Pro Web Client	
	Device Manager Connections Device Manager Pro Integration with EPOS (Sennheiser) Headset Devices (Beta)	
	OVOC Voice Quality Package and Enterprise Device Communication	
	Microsoft Connections	
	Active Directory Server (Skype for Business Users) – OVOC Voice Quality Package	
	OVOC and Skype for Business MS-SQL SSL Connection— Voice Quality Package	
	OVOC and Microsoft Teams Notification Subscription Service	
	OVOC Floating License Connections	37
	OVOC and Floating License Service Connections	38
	OVOC Managed Devices and Floating License Application Connection	38
	Generating Custom OVOC Server Certificates	38
7	Step 6: Managing Device Connections behind NAT	41
	Establishing Connections for OVOC Managed Devices	41
	Automatic Detection	41
	Configure Cloud Architecture (WebSocket Tunnel)	42
	Connecting OVOC to Managed Devices with Cloud Architecture Mode (WebSocket	
	Tunnel)	
	Configure OVOC Server with Public or NAT IP Address	
	Configuring NAT per Tenant	
	Connecting OVOC to Managed Devices with HTTPS Certificate Mutual Authentication	
	Establishing Connections for Device Manager Devices Managing Multiple OVOC Interfaces	
	MSBR Device Connections	
	Multiple TLS Contexts for Device Connections	
2	Step 7: Setting Up Northbound Interface Connections	

NBIF Client	. 53
Northbound User Authentication	.53
Data Analytics API	53

This page is intentionally left blank.

1 Introduction

This document provides security guidelines for safeguarding your network and OVOC applications against malicious attacks.

AudioCodes OVOC Security Solution

The AudioCodes OVOC application provides a comprehensive package of security features that handles the following main security areas:

- Securing the OVOC server platform:
 - Step 1: Implementing Server Security Settings on page 3
- Securing the Application (Identity Management):
 - Step 2: Managing OVOC Users on page 11
- Securing the Communication:
 - Step 3: Configuring Enterprise Firewall on page 21
 - Step 4: Securing SNMP Interface Access (OVOC) on page 30
 - Step 5: Implementing X.509 Authentication on page 31
 - Step 7: Setting Up Northbound Interface Connections on page 53
 - Step 6: Managing Device Connections behind NAT on page 41

Part I

Securing the OVOC Server Platform

2 Step 1: Implementing Server Security Settings

This step describes enhanced security settings that can be implemented using the OVOC Server Manager to prevent intrusion to the OVOC server platform. The OVOC Server Manager tool has been designed to provide the ability to configure all the required security measures to prevent intruders from accessing and manipulating Operating System level files. The OVOC Server Manager tool serves as an interface to the Operating System and therefore discourages users from running Linux commands directly from an OS shell; such actions can expose security vulnerabilities. In addition, each OVOC release version includes the latest security updates for the RPM packages that are available in the official CentOS/RHEL repositories (see Backporting Security Fixes below).

This Section describes the following actions that can be performed in the OVOC Server Manager to enhance security:

- Inbuilt Features below
- Changing the OS Password on the next page
- Changing Default Database Password on page 5
- OVOC Server Data Encryption on page 5
- Provisioning SSH Options to Access OVOC Server on page 5
- Integrity Testing on page 6
- Transferring Files Using SFTP / SCP on page 7
- Advanced Security Options on page 7
- NTP and Clock Synchronization on page 8

Inbuilt Features

The OVOC Server includes the following inbuilt features:

- Backporting Security Fixes below
- HTTP X-Header Security Tags on the next page

Backporting Security Fixes

Security scans may reveal that the available version for RedHat/CentOS httpd upstream packages is higher than the installed version. This may be due to the RedHat/CentOS Security scans not taking backporting into account. In this regard, when AudioCodes detects a specific vulnerability, it incorporates the related fix not only in the latest upstream version, but also in older versions i.e. backports the fix to the older version, distributed by RedHat/CentOS and makes these updates available to the AudioCodes software distribution list.

Each OVOC release version includes the latest security updates for the RPM packages that are available in the official CentOS/RHEL repositories – including kernel, openssl, PHP and other components. Although these packages do not include the latest available upstream version, they are not necessarily vulnerable to all the vulnerabilities listed in RedHat/CentOS security scan reports.

For more information on Security Backporting, refer to:

https://access.redhat.com/security/updates/backporting/

HTTP X-Header Security Tags

The OVOC Server embeds the following security tags in X-headers for HTTP responses to OVOC clients:

- **HTTP 401 Unauthorized**: these responses from the OVOC server to managed AudioCodes devices now includes the standard "www-authenticate" header with "Basic" scheme.
- OVOC Server HTTP X-header responses from the OVOC server to all OVOC clients include the following tags for enhanced security:
 - x-frame-options: prevent hijack attacks attempts to clicks (click-jacking) that are
 designated for the original server and send them to another server. This ensures that
 content is not embedded into other sites.
 - **X-XSS-Protection**: prevent Cross-Site scripting attacks that stops pages from loading when they detect reflected cross-site scripting (XSS) attacks.
 - set X-Content-Type (Options nosniff): protect against MIME sniffing vulnerabilities by ensuring that the MIME types advertised in the Content-Type headers are not changed and are interpreted as deliberately configured.

Changing the OS Password

OS Password settings are comprised of the following:

- General password settings: these settings enable you to change the 'Minimum Acceptable Password Length' and 'Enable User Block on Failed Login'. In addition, you can modify settings for a specific user, such as 'User's Password' and 'Password Validity Max Period'.
- Operating System Users Security Extensions: these settings enable you to change the default user password "acems" for accessing the OVOC server platform over an SSH connection terminal. In addition you can configure this passwords validity period, the maximum allowed numbers of simultaneous open sessions and the inactivity time period (days) before the OS user is locked.

The 'Security Event' is raised when a specific user is blocked after reaching the maximum number of login attempts.

To change these settings, refer to Section 'OS User Passwords' in the *One Voice Operations Center Server IOM*.

Changing Default Database Password

The PostgreSQL database default password can be changed. The OVOC server shuts down automatically before performing the change. Refer to PostgreSQL DB Password' in the *IOM* manual.

- When upgrading to Version 8.2, the PostGreSQL database password is restored to default.
- It is not possible to restore the database password or to access the database without it.

OVOC Server Data Encryption

- For optimizing data protection for the entire database and on disk, it is recommended to encrypt storage used by the OVOC application. For exact instructions for encryption methodology and possible performance impact, consult with your IT department experts / storage vendors. There were no performance issues experienced on the OVOC application during the test cycle.
- SHA512 is the system default encryption algorithm for encrypting passwords (ENCRYPT_METHOD). The following default basic checks are performed for OS passwords:

try_first_pass retry=3 minlen=8 dcredit=-2 ucredit=-1 lcredit=-1 dictpath=/usr/share/cracklib/pw_dict enforce_for_root
For details, see https://deer-run.com/users/hal/sysadmin/pam_cracklib.html

Provisioning SSH Options to Access OVOC Server

You can configure the following options for connecting to the SSH terminal connection (for more information, refer to 'SSH' in the *IOM* manual):

- Configure SSH Log Level: You can configure the log level of the SSH daemon server. The log files are found at the location '/var/log/secure' (older records are stored in secure.1, secure.2 etc.)
- Configure SSH Banner: The SSH Banner displays a pre-defined text message each time the user connects to the OVOC server using an SSH connection. You can customize this message. By default this option is disabled
- Configure SSH on Ethernet Interfaces: You can allow or deny SSH access separately for each network interface enabled on the OVOC server.
- Configure SSH Allowed Hosts: This option enables you to define which hosts are allowed to connect to the OVOC server through SSH:
 - Allow ALL Hosts (default)

Deny ALL Hosts

When this action is performed, the OVOC server is disconnected and you cannot reconnect through SSH. Before you disable SSH access, ensure that you have provisioned alternative connection methods, for example, serial management connection or KVM switch connection.

Add Host/Subnet to Allowed Hosts

When adding a Host Name, ensure to verify your remote host name appears in the DNS server database and your OVOC server has an access to the DNS server.

Remove Host/Subnet from Allowed Hosts

When you remove either the only existing IP address, Subnet or Host Name in the Allowed Hosts list, there are no remote hosts with access (i.e. for each respective option) to connect to the OVOC server using SSH. When this action is performed, you are disconnected from the OVOC server and may not be able to reconnect through SSH. Therefore, prior to disabling SSH access, ensure that alternative connection methods have been provisioned, for example, serial management connection or KVM switch connection.

Integrity Testing

Integrity testing is performed to verify whether system file attributes have been modified. You can activate the regular File Integrity tool or the Advanced Intrusion Detection tool as described below.

File Integrity Checker

The File Integrity checker tool periodically verifies whether file attributes were changed (permissions/mode, inode #, number of links, user id, group id, size, access time, modification time, creation/inode modification time). File Integrity violation probIOC are reported through OVOC Security Events. The File Integrity checker tool runs on the OVOC server machine. Refer to 'File Integrity Checker' in the *IOM* manual.

Software Integrity Checker (AIDE) and Pre-linking

AIDE (Advanced Intrusion Detection Environment) is a file and directory integrity checker. This mechanism creates a database from the regular expression rules that it finds in its configuration file. Once this database is initialized, it can be used to verify the integrity of the files.

Pre-linking is designed to decrease process startup time by loading each shared library into an address for which the linking of needed symbols has already been performed. After a binary has been pre-linked, the address where the shared libraries are loaded will no longer be random on a per-process basis. This is undesirable because it provides a stable address for an attacker to

use during an exploitation attempt. Refer to 'Software Integrity Checker (AIDE) and Pre-linking' in the *IOM* manual.

Web Application Firewall (WAF)

An option in the OVOC Server Manager controls whether the OVOC server validates the WebSocket IP address and client's logged in IP address (REST connection) for connection requests from the OVOC Web client. This setting seeks to avoid scenarios where a Web Application Firewall (WAF) may randomly change the Client IP address in the packets and therefore the OVOC server receives the WebSocket packet from an IP address that is different to the client's logged in IP address (REST IP address). As a result, the Client-Server WebSocket connection cannot be established and the operator is logged out. refer to 'Disable Client's IP Address Validation' in the *IOM* manual.

Transferring Files Using SFTP / SCP

Files should be transferred to and from the OVOC server using any SFTP/SCP file transfer application. Refer to Appendix Transferring Files in the *IOM* manual.

All OVOC and device information available for the NMS and other Northbound interfaces including Topology, Performance and Backup data is located in the OVOC server machine under the folder /NBIF. This folder can be accessed using HTTPS browsing by entering the URL https:// <OVOC server IP>/NBIF in your Web browser. For more information, refer to the *One Voice Operations Center Integration with Northbound Interfaces Guide*.

System Profiles

When adding new tenants in OVOC, template system profiles can be used to prevent user-defined password being sent over the network in plain text. For the HTTP profile, a default system password is provided and for the SNMPv3 Profile, default system strings are provided for the Authentication and Privacy keys.

Advanced Security Options

This section includes the following advanced security configuration options:

- Auditd below
- Network Options on the next page

Auditd

Auditd is the user space component to the Linux Auditing System that is responsible for writing audit records to the disk. This tool monitors what is happening in your system at the kernel level. For example, it monitors network traffic and access to files.

Using the Auditd option, you can change the auditd tool settings to comply with the Security Technical Information Guidelines (STIG) recommendations.

This option is by default disabled; however, it is highly recommended to enable it. When enabled, these records are saved in the /var/log/audit/ directory on the OVOC server platform. To enable this option, refer to 'Auditd Options' in the One Voice Operations Center Server IOM.

Network Options

The following network security options provide protection against hackers and intruders. All these options are by default disabled; however it is highly recommended to enable all of these options. To enable these options, refer to 'Network Options' in the *IOM* manual.

■ Ignore Internet Control Message Protocol (ICMP) Echo requests:

This option ensures that the OVOC server does not respond to ICMP broadcasts, and therefore such replies are always discarded. This prevents attempts to discover the system using ping requests.

Ignore ICMP Echo and Timestamp requests:

This option ensures that the OVOC server does not respond to an ICMP timestamp request to query for the current time. This reduces exposure to spoofing of the system time.

■ Disable ICMP Redirect Messages:

This option disables the sending of ICMP Redirect Messages, which are generally sent only by routers.

Block ICMP Redirect Messages:

This option ensures that the OVOC server does not respond to ICMP Redirect broadcasts, and therefore such replies are always discarded. This prevents an intruder from executing a denial of service attack by attempting to redirect traffic from the OVOC server to a different gateway.

NTP and Clock Synchronization

Network Time Protocol (NTP) is used to synchronize the time and date of the OVOC server (and all its components) with other devices in the IP network You can configure the OVOC server to either obtain its NTP clock from an external source or from its own server. Consequently OVOC clients and subnets can synchronize with one of these clock sources. If the OVOC server is configured as a Stand-alone server, then you can configure the clients and subnets which are authorized to synchronize with the OVOC clock (see below).

- It is recommended to configure the OVOC server to synchronize with an external clock source because the OVOC server clock is less precise than other NTP devices. For example, for OVOC cloud deployments, it is recommended to configure the AWS/Azure IP address or Domain Name as the NTP clock source.
- Configure the same NTP server clock source on both the OVOC server and the managed AudioCodes device (Setup menu > Administration tab > Time & Date).

- Restrict Access to NTP Clients: If you have configured the OVOC server as an NTP server, then you can configure NTP rules to authorize which clients are permitted to synchronize with the OVOC system NTP clock (refer to 'Restrict Access to NTP Clients' in the OVOC IOM).
- Authorizing Subnets: When the OVOC server is configured as an NTP server, you can configure NTP rules to authorize which subnets can connect to synchronize with the OVOC system clock (refer to 'Authorizing Subnets to Connect to OVOC' in the OVOC IOM'.
- Activate DDoS Protection: You can activate DDos protection to prevent Distributed Denial of Service attacks on the OVOC server. For example, attacks resulting from security scans. This is relevant for both when the OVOC server is configured as a Stand-alone clock source and when an external clock source is used.

Apache Log4j

OVOC support for Apache Log4j Version 2.0 is as follows:

- OVOC Version 8.0.3137 release and above supports Apache Log4j 2.17.1
- Old OVOC directories (prior to Version 8.0.3137) can be deleted i.e /ACEMS/server_X.Y.Z
- Kafka does not yet officially support version Log4j 2.17.1, however recommends removing specific packages from Kafka jar for which OVOC complies (https://kafka.apache.org/cvelist)

Part II

Securing the Application

Step 2: Managing OVOC Users

- Authenticating OVOC Users with External User Databases below
- Provisioning Operator Security on page 15
- Privacy Mode on page 19
- OVOC Server Data Encryption on page 5

Authenticating OVOC Users with External User Databases

By default, OVOC users are managed locally in the OVOC database. However , it is recommended to use an external databases for securing OVOC users using one of the following platforms:

- Microsoft Azure below
- LDAP Server below
- RADIUS Server on the next page

See also:

- External Authentication and Multitenancy on page 13
- Combined Authentication Mode on page 14
- Configuring Operator Authentication with SAML on page 14

Microsoft Azure

If you already have centralized user authentication using Microsoft Azure Active Directory, it's recommended to implement it for OVOC operators as well. For configuration procedures, refer to 'Registering OVOC Applications on Azure' and 'Configuring OVOC Web Azure Setting's in the OVOC IOM.

LDAP Server

If you already have centralized user authentication via an LDAP server, it's recommended to implement it for OVOC operators as well. This connection is secured using Microsoft certificates, which are saved to the /opt/ssl/keystore.jks directory on the OVOC server.

Do the following:

- In the OVOC, open the Authentication page (System > Administration > Security >
 Authentication).
- 2. From the 'Authentication Type' drop-down, select LDAP.
- 3. Configure the 'LDAP Authentication Server IP'.
- 4. Configure the 'LDAP Authentication Server Port'.

- **5.** Configure the 'LDAP Connectivity DN' parameter using an Active Directory Service Account (mandatory), for example, MyServiceAccount@domain.
- **6.** Configure the 'LDAP Connectivity Password' as required.
- 7. In the 'LDAP Server Number of Retries' field, enter the number of login attempts the operator can make before they're suspended. When the number is reached, the operator is blocked. Only the 'system' operator whose security level is 'Administrator' can then unblock them. Default: 3 attempts.
- 8. Configure the 'User DN Search Base' as required.
- Select the 'SSL' option to secure the connection with the LDAP server over SSL; the 'Certificate' drop-down is activated.

Make sure you load the SSL certificate file, required by the LDAP Active Directory platform, to the OVOC Software Manager.

- **10.** From the 'Certificate' drop-down, select the certificate file to secure the connection with the LDAP server over SSL.
- **11.** In the "Authorization Level Settings" section, enter the required names of the Authentication Groups.
- 12. Under the screen section 'GW / SBC / MSBR Authentication', select the option "Use AD Credentials for Device Page Opening" to enable OVOC operators to login to AudioCodes devices using the LDAP server credentials instead of the HTTP/S credentials that are defined in the device settings or in the tenant's SNMP profile.
- 13. Click Submit.

RADIUS Server

If you already have centralized user authentication via an RADIUS (Remote Authentication Dial-In User Service) server, it's recommended to implement it for OVOC operators as well.

If the connection to the RADIUS servers fails, the local operators database can be automatically used as a backup after a defined timeout, i.e., if the RADIUS connection fails, the user and password are replicated to the local users database so the operator can log in to the OVOC as a local user (configured by parameter 'Radius Transmit Timeout' and dependent on the timeout value defined in 'RADIUS auth number of retries'.

Do the following:

- 1. Open the Authentication page (System tab > Administration > Security > Authentication).
- 2. From the Authentication Type drop-down list, select **RADIUS**.
- **3.** Configure the parameters:
 - 'RADIUS retransmit timeout' (Default: 3000 milliseconds). If this timeout expires, local authentication is performed.

'RADIUS auth number of retries' (Default: 1)

These parameters will be used for each RADIUS Server.

- 4. Select the **Enable display of RADIUS reply message** option. Default: Cleared.
- 5. From the 'Default Authentication Level' dropdown, select the required value,.
- 6. For each of the three RADIUS servers, define the server's IP address, port and secret. At least one server must be provisioned. 'Server Secret' defines the shared secret (password) for authenticating the device with the server. Must be cryptically strong. Also used by the server to verify authentication of RADIUS messages sent by the device (i.e., message integrity). See the device's manual for more information.
- 7. If you wish to use the RADIUS credentials to login to AudioCodes devices using Single Signon, select check box "Use RADIUS Credentials for Device Page Opening". When configured, the RADIUS credentials are used to login to AudioCodes devices over Single Sign-on, instead of the HTTP/S credentials that are defined in the device settings or in the tenant's SNMP profile.

If an operator tries to log in to RADIUS and it's inaccessible, a local login to the OVOC is attempted and 'Authentication Type' is automatically switched to OVOC (local authentication). When the connection is re-established, the operator must manually switch back authentication mode.

For more information, refer to the One Voice Operations Center User's Manual.

External Authentication and Multitenancy

- Microsoft Azure: Microsoft Azure user authentication supports multitenancy registration. System or Tenant operators view entities belonging to their managed tiers (service providers, channels and customers) and according to security levels and roles.
 - Main Tenant system or tenant operators: Members of Azure groups who retrieve
 their security level from OVOC according to their mapped Group Name (OVOC Azure
 Authentication screen)
 - External tenant operators: Operators of managed tiers are assigned roles on Azure
 under OVOCApplication > Enterprise Applications for their registered Azure tenant.
 Azure Multi-Factor token authentication is used to authenticate these operators.
 Operators are authorized according to their assigned role and Tenant ID.

When multitenancy registration is configured, guest users are not supported for both the Main tenant and external tenants. For setting up multitenancy on Azure, refer to 'Registering OVOC Applications on Azure' and 'Configuring OVOC Web Azure Setting's in the OVOC IOM.

- **LDAP:** Multitenancy is not supported for LDAP server (LDAP works with a single Active Directory only)
- Radius: Multitenancy is not supported for RADIUS server

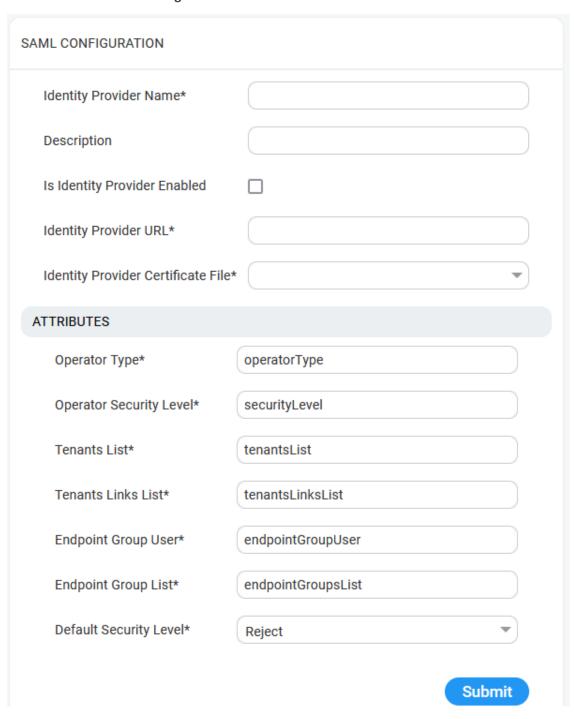
Combined Authentication Mode

When the Combined Authentication Mode is enabled and an operator attempts to log in to the external server, however it's unavailable, OVOC connects to the local database with the same operator credentials.

For example, if the local user database is configured as the first order and the local user does not exist, OVOC attempts to connect to the external database LDAP or RADIUS with the same user credentials. When the RADIUS, or LDAP Authentication Types and the "Combined Authentication Mode" are both configured, the Fixed License Pool and Floating License functionality are supported (using the local database credentials).

This option is not relevant for Microsoft Azure authentication; however, OVOC automatically uses local authentication when both user and password are provided in the REST authentication request.

To enable the Combined Authentication Mode:


- Under Combined Authentication Mode, select the Enable combined authentication option, the 'Authentication Order' drop-down is enabled from which External First or Local First can be selected.
 - External First: If the Azure server is unavailable when the externally authenticated operator attempts to log in, OVOC connects with the same operator credentials to the local (OVOC) operators database.
 - **Local First:** If the operator is not found in the local (OVOC) operators database, OVOC connects with the same operator credentials to the external authentication server.

Configuring Operator Authentication with SAML

Security Assertion Markup Language (SAML) based authentication of a carrier operators is an XML-based open-standard for identity management between an identity provider (IdP) and a service provider (SP). The IdP performs operator authentication and passes the operator's identity and authorization level to the SP; the SP trusts the IdP and authorizes operator access. This authentication method can be applied at system or tenant level for all operator types.

The attributes shown below are default attribute names that point to customer fields that are defined on the SAML client including the configured values.

Figure 3-1: SAML

The certificate file used to secure the connection with the IdP must be loaded to the Software Manager. This connection is secured over HTTPS port 443.

Provisioning Operator Security

When a user attempts to log in to OVOC, the login user name and password are validated, and if successful, OVOC then determines the user's OVOC security level based on the custom OVOC attribute on the external platform. If one of the OVOC Security levels has not been

defined, the parameter 'Default Operator Type and Security Level' (LDAP and Azure) and Default Auth level (RADIUS) in the Authentication page determines behavior:

- If a security level has been defined on the external platform for this parameter, the user is logged in with this security level
- If this parameter is set to "Reject", then the user will not be able to login.

The table below summarizes the Operator Actions and Security Levels for the multi-tenant architecture:

Table 3-1: Provisioning Operator Security

Operat or Type	Security Level	Define Operat ors	Mana ge Tenan ts	Manage Global/Syste m Entities/Reso urces	Manage Tenant Resourc es	Monito r System Resourc es	Monito r Tenant Resourc es
System	Admin	Yes, All levels	Yes	Yes	Yes	Yes	Yes
	Operato r	No	No	Yes	Yes	Yes	Yes
	Monitor	No	No	No	No	Yes	Yes
Tenant	Admin	In this tenant networ k only	No	No	In this tenant networ k only	No	Yes
	Operato r	No	No	No	In this tenant networ k only	No	Yes
	Monitor	No	No	No	No	No	Yes
	Monitor ing Links	No	No	No	No	No	Links Only
Endpoi nts Group (Tenan t)	Admin or Operato r	No	No	No	Only for endpoi nts in the manag ed Group	Yes	Yes

Operat or Type	Security Level	Define Operat ors	Mana ge Tenan ts	Manage Global/Syste m Entities/Reso urces	Manage Tenant Resourc es	Monito r System Resourc es	Monito r Tenant Resourc es
UMP Operat or (Syste m)	Operato- r	No	Yes	Yes	Yes	Yes	Yes

Resource/Entity Management

The table below shows the actions permitted for each OVOC operator type and security level:

- Global resources: Includes OVOC server-related management including the OVOC server License, File Storage, Operating System, Server Backup and Restore and HA configuration.
- Tenant resources: Includes the portion of the OVOC server License that is allocated to the tenant.
- Global entities: Includes security policy for operators, CA certificate assignment, storage policy, global alarm settings and device backup policy settings.
- System entities: Includes system alarms, forwarding rules for system alarms and statistics reports.
- Tenant entities: Includes all entities that are accessible for a specific tenant such as all regions, sites, devices, links, call hierarchies and summaries, journal records and alarms. In addition to statistics reports, alarm forwarding rules and threshold and alert rules. For phone deployments, Endpoint groups can be defined to manage specific phones in a site i.e. for upgrades (see also Operator Type below).

Operator Type

The following operator types can be provisioned:

- System "Admin": Global operator with permissions to manage resources for the entire OVOC topology:
 - Define and manage all system tenants
 - Define system operators (all levels) or tenant operators (admin, operator and monitor) and attach them to any tenants.
 - Manage system entities/resources
 - Define and manage global entities/resources
 - Manage all tenant specific entities/resources

- System "Operator": Operator with permissions for viewing and performing operations on all devices:
 - Manage system entities/resources
 - Define and manage global entities/resources which can be view and managed by all other tenants.
 - Manage all tenants' specific entities/resources except security-related entities, include moving device between tenants.
- System "Monitor": Operator with Viewing only permissions:
 - Monitor all tenants specific entities/resources
 - Monitor system entities/resources
 - Monitor global entities/resources
- UMP Operator used for managing the connection with the Microsoft Teams Office 365 platform as part of the AudioCodes Live Teams Cloud solution.
- Tenant "Admin": The Tenant Admin can manage resources for the tenant network only:
 - Define tenant operators (Admin, Operator and Monitor)
 - Delete tenant operators only if he attached to attach to all tenants as the deleted operator
 - Manage only tenant specific entities/resources, including moving device between attached tenants and tenant license pool management.
 - Monitor global entities
- Tenant "Operator": The Tenant Operator has privileges for the Tenant network only:
 - Manage tenant specific resources, will not be aware in any way to other tenants entities/resources or system entities/resources, include moving devices between attached tenants and tenant license pool management
 - Monitor global entities
- Tenant "Monitor": The Tenant Monitor has Monitor privileges for devices that are defined in the specific tenant network:
 - Monitor tenant specific resources
 - Monitor global entities
- Tenant "Monitoring Links": The Monitoring Links has privileges for the managed links only:
 - Sites defined as link destinations and devices defined as source/destination to the links.
 - Assigned links in the Network screen
 - Alarms and events for the assigned link entities
 - Statistics for assigned links

- Notifications for tasks and alarms only for the assigned links
- Endpoints Group Tenant operator used for managing Tenant Endpoints Groups. When defining Tenant operator (with "Admin" or "Operator" permissions), ensure to select the check box "Restrict Endpoints Actions Except for these Groups".

Operator Passwords

New Operator passwords must comply with UTF-8 character sets.

Privacy Mode

"Privacy" mode can be enabled by System operators to hide the following OVOC data from Tenant and System operators:

- Masking of gateway and SBC phone numbers
- Hiding of existing User/URI reports or schedulers
- Hiding of existing user tables and statistics
- Hiding of User/URI reports and their respective schedulers
- Hiding of new Calls/SIP Ladder
- For Skype for Business call:
 - Partial masking for Phone CDRs
 - Full masking for CDR URIs
 - Full masking for MDRs
 - Full masking for Conference CDRs

Part III

Securing the Communication

4 Step 3: Configuring Enterprise Firewall

The OVOC inter-operates with firewalls, protecting against unauthorized access by crackers and hackers, thereby securing regular communications. You need to define rules in your firewall to manage the secure communications for all OVOC interfaces that connect to the OVOC server. Each of these network interfaces processes use different communication ports which should be secured appropriately.

By default, all ports are open on the OVOC server side. When installing the OVOC server, you need to configure its network and open the ports in your Enterprise LAN according to your site requirements; based on the firewall configuration rules (representing these port connections) that are described in the table below. For some of the firewall rules shown in the table below, the port numbers shown are default numbers, such ports can be reconfigured by users. The table below shows the firewall configuration schema for all OVOC connections.

OVOC Web Clients
(Private IPs)

Network
Operations Center (NOC)

Enterprise Firewall

OVOC/NBT Veacement - TCP Prittys)

See Service (TCP PITTS)

Service (T

Figure 4-1: Firewall Configuration Schema

The above figure displays images of devices. For the full list of supported products, refer to the OVOC Release Notes.

The table below shows the recommended firewall configuration according to the highest level of security that can be implemented on the OVOC server platform.

Some of these port connections shown in the table below are non-secure (indicated in the column 'Secured Connection" below).

Table 4-1: Recommended Firewall Port Configuration

Connection Type	Port Type	Secured Connection	Port Number	Purpose	Port side / Flow Direction
OVOC Clients and OVOC serv	er	<u>'</u>		,	
TCP/IP client ↔ OVOC server	ТСР	√	22	SSH communication between OVOC server and TCP/IP client. Initiator: client PC	OVOC server side / Bi- directional.
OVOC and NBIF Client ↔ OVOC server	TCP (HTTPS)	√	443	HTTPS for OVOC/NBIF clients. Initiator: Client	OVOC server side / Bi- directional.
Microsoft Teams ↔ OVOC Communication	TCP (HTTPS)	√ ·	443	Connection to Microsoft Teams Initiator: Microsoft Teams The following link includes a list of IP addresses that need to be opened on the Customer Firewall to allow Calls Notifications from Microsoft (refer to item 23 in below link): Microsoft Teams IP List	Bi-directional
OVOC server and Devices					
Device (Behind NAT) ↔ OVOC server	UDP	√	1161	Keep-alive – SNMPv3 trap listening port (used predominantly for devices located behind a NAT). Initiator: device	OVOC server side / Receive only.
Device (Not Behind NAT) ↔ OVOC server	UDP	٧	162	SNMPv3 trap listening port on the OVOC that is used when the device is not located behind a NAT. Initiator: device	OVOC server side / Receive only.
Device ↔ OVOC server (Trap Manager)	UDP	٧	161	SNMPv3 Trap Manager port on the device that is used to send traps to the OVOC. Initiator: OVOC server	MG side / Bi-directional
Device↔ OVOC server (NTP Server)	UDP (NTP server)	×	123	NTP server synchronization. Initiator: MG (and OVOC server, if configured as NTP client) Initiator: Both sides	Both sides / Bi-directional

Connection Type	Port Type	Secured Connection	Port Number	Purpose	Port side / Flow Direction				
Device ↔ OVOC server	TCP (HTTPS)	V	443	HTTPS connection for files transfer (upload and download) and REST communication. Initiator: OVOC	OVOC server side / Bi- directional				
Decision Managed by the Decis	\			server					
Devices Managed by the Devi		.,	442	LITTES Commention	0\/0C Di				
Endpoints ↔ OVOC Device Manager	TCP (HTTPS)	V	443	HTTPS Connection between endpoints and OVOC Device Manager. Initiator: Endpoints	OVOC Device Manager Side / Bi-Directional.				
				HTTPS connection used by endpoints for downloading firmware and configuration files from the OVOC Device Manager. Initiator: Endpoints					
OVOC Device Manager ↔ ShareFile				HTTPS connection used by OVOC Device Manager for downloading firmware and configuration files from ShareFile.	OVOC Device Manager Side / Bi-Directional				
				Initiator: OVOC Device Manager For information on ShareFile IP Ranges, see ShareFile Firewall Configuration.					
OVOC Voice Quality Package	TLS	1	J						
AudioCodes Devices ↔ OVOC Voice Quality Package server	TCP (TLS)	1	5001	XML based Tomcat TLS secured communication for control, media data reports and SIP call flow messages. Initiator: Endpoint	OVOC server side / Bi- directional				
MS-SQL Server	MS-SQL Server								
OVOC Voice Quality Package server ↔ Lync MS-SQL Server	TCP (TLS)	√	1433	Connection between the OVOC server and the MS-SQL Lync server. This port should be configured with SSL. Initiator: Skype for Business MS-SQL Server	Lync SQL server side / Bi-directional				

Connection Type	Port Type	Secured Connection	Port Number	Purpose	Port side / Flow Direction
LDAP Active Directory Server			,		
OVOC Quality Package server ↔ Active Directory LDAP server (Skype for Business user authentication with OVOC Quality Package)	TCP (TLS)	1	636	Connection between the OVOC Quality Package server and the Active Directory LDAP server with SSL configured. Initiator: OVOC server	Active Directory server side/ Bi-directional
OVOC server ↔ Active Directory LDAP Server (OVOC users authentication)	TCP (TLS)	V	636	Connection between the OVOC server and the Active Directory LDAP server with SSL configured. Initiator: OVOC server	Active Director server side/ Bi-directional
RADIUS Server			J		
OVOC server ↔ RADIUS server	UDP	×	1812	Direct connection between the OVOC server and the RADIUS server (when OVOC user is authenticated using RADIUS server). Initiator: OVOC server	OVOC server side / Bi- directional
OVOC HA		-1	,		
Primary OVOC server ↔ Secondary OVOC server (HA Setup)	ТСР	*	7788	Database replication between the servers. Initiator: Both servers	Both OVOC servers / Bi-directional
	UDP	×	694	Heartbeat packets between the servers. Initiator: Both servers	
External Server Connections					
OVOC server ↔ Mail Server	ТСР	×	25	Trap Forwarding to Mail server Initiator: OVOC server	Mail server side / Bi-directional
OVOC server ↔ Syslog Server	ТСР	×	514	Trap Forwarding to Syslog server. Initiator: OVOC server	Syslog server side /Bi- directional
OVOC server ↔ Debug Recording Server	UDP	×	925	Trap Forwarding to Debug Recording server. Initiator: OVOC server	Debug Recording server /Bi- directional
OVOC server ↔ UMP-365 server	TCP RDP	V	3389	Remote Desktop access to UMP-365 server	UMP-365 /Bi-dir ectional

Connection Type	Port Type	Secured Connection	Port Number	Purpose	Port side / Flow Direction
				server	
RFC 6035					
OVOC Quality Package Server ↔ Endpoints	UDP	x	5060	SIP Publish reports sent to the OVOC Quality Package server from the endpoints, including RFC 6035 SIP PUBLISH for reporting device voice quality metrics.	OVOC Quality Package server / Bi-directional

Table 4-2: Firewall Configuration: NOC/OSS > OVOC

Source IP Address Range	Destination IP Address Range	Secured Connection	Protocol	Source Port Range	Destination Port Range
NOC/OSS	ovoc	1	SFTP	1024- 65535	20
		√	SSH	1024- 65535	22
		×	Telnet	1024- 65535	23
		×	NTP	123	123
		√	HTTPS	N/A	443
		√	SNMP (UDP) Set for Active alarms Resync feature.	N/A	161
		×	TCP connection for Data Analytics DB Access	N/A	5432
			Initiator: DB Access client		
			This port is open when the "Data Analytics" Voice Quality feature license has been purchased and the		
			feature has been enabled		

Table 4-3: Firewall Configuration: OVOC > NOC/OSS

Source IP Address Range	Destination IP Address Range	Secured Connection	Protocol	Source Port Range	Destination Port Range
NOC/OSS	ovoc	×	NTP	123	123
		√	SNMP (UDP) Trap	1024- 65535	162
		√	SNMP (UDP) Set for Active alarms Resync feature	1164- 1165	-
		√	SNMP (UDP) port for alarm forwarding	1180- 1220	-

Firewall Rules for Cloud Architecture Mode (WebSocket Tunnel)

When the OVOC server is deployed in a public cloud and the Cloud Architecture feature is enabled (see Configure Cloud Architecture (WebSocket Tunnel) on page 42), all proprietary connections between SBC devices and the OVOC server are bundled into an HTTP/S tunnel overlay network over HTTPS port 443, therefore this port must be open on the Enterprise firewall. Configuring other Enterprise firewall rules for SBC and OVOC server connections is not necessary.

Firewall Rules for NAT Configuration Options

The table below describes the ports to open on Enterprise or Cloud firewall deployments for devices managed behind a NAT for the different configuration options as described in Step 6: Managing Device Connections behind NAT on page 41.

Table 4-4: Firewall Rules for NAT Configuration

Configuration Option	Ports to Configure	Purpose	Port side / Flow Direction
SBC Devices			
Cloud Architecture Mode (Device > OVOC Server)	TCP HTTP 80 TCP HTTPS 443	See Cloud Architecture Mode (WebSocket Tunnel) Firewall Settings.	OVOC server side / Bi-directional
OVOC Server NAT Mode (OVOC > Devices)	SNMP UDP port 1161	Keep-alive - SNMP trap listening port (used predominantly for devices located behind a NAT). Used also by Fixed License Pool and Floating License Service. Initiator: AudioCodes device	OVOC server side / Receive only
	SNMP UDP port 162	SNMP trap listening port on the OVOC. Initiator: AudioCodes device.	OVOC server side / Receive only
	TCP 5000	XML based communication for control, media data reports and SIP call flow messages.	OVOC server side / Bi-directional
		Initiator: Media Gateway.	
	TCP 5001 (Voice Quality Management over TLS)	XML based TLS secured communication for control, media data reports and SIP call flow messages. Initiator: AudioCodes device.	OVOC server side / Bi-directional
	NTP 123	NTP server port (OVOC server's Public IP address is configured as the NTP server). See Establishing OVOC-Devices Connections.	.Both sides / Bi-directional
Devices Managed by the Device Manager			
Endpoints ↔ OVOC Device Manager	TCP (HTTPS) 443	HTTPS connection between the endpoints and the OVOC Device Manager. Initiator: Endpoints	OVOC Device Manager side / Bi-Directional
		HTTPS connection that is used by endpoints for downloading firmware and configuration files from the OVOC Device Manager.	
		Initiator: Endpoints	
OVOC Device Manager \leftrightarrow ShareFile	TCP (HTTPS) 443	HTTPS connection used by OVOC Device Manager for downloading firmware and configuration files from ShareFile.	OVOC Device Manager Side / Bi-Directional

Configuration Option	Ports to Configure	Purpose	Port side / Flow Direction
		Initiator: OVOC Device Manager For information on ShareFile IP Ranges, see ShareFile Firewall Configuration.	

Firewall Rules for Service Provider with Single Node

Connection	Port Type	Secured Connection	Port Number	Purpose	Port side / Flow Direction
OVOC clients and OVOC server	,	,		,	
HTTPS/NBIF Clients \leftrightarrow OVOC server	TCP (HTTPS)	√	443	Connection for OVOC/ NBIF clients. Initiator: Client	OVOC server side / Bi- directional
Microsoft Teams↔ OVOC Communication	TCP (HTTPS)	V	443	Connection to Microsoft Teams Initiator: Microsoft Teams	Bi-directional
WebSocket Client ↔ OVOC Server Communication	ТСР (НТТР)	V	915	WebSocket Client and OVOC Server communication (internal) according to RFC 6455, used for managing the alarm and task notification mechanism in the OVOC Web. Initiator (internal): WebSocket	OVOC server side / Bi- directional
OVOC LOVOCAA I				Client	
OVOC server and OVOC Managed		,			
Device \leftrightarrow OVOC server (SNMP)	UDP	V	1161	Keep-alive - SNMP trap listening port (used predominantly for devices located behind a NAT). Used also by Fixed License Pool and Floating License Service. Initiator: AudioCodes device	OVOC server side / Receive only
	UDP	V	162	SNMP trap listening port on the OVOC. Initiator: AudioCodes device	OVOC server side / Receive only
	UDP	V	161	SNMP Trap Manager port on the device that is used to send traps to the OVOC server. Used also by Fixed License Pool and Floating License Service. Initiator: OVOC server	MG side / Bi-directional
Device → OVOC server (NTP Server)	UDP (NTP server)	V	123	NTP server synchronization for external clock. Initiator: MG (and OVOC server, if configured as NTP client) Initiator: Both sides	Both sides / Bi-directional
Device ↔ OVOC server	TCP (HTTPS)	√	443	HTTPS connection for files transfer (upload and download) and REST communication. Initiator: Both sides can initiate an HTTPS connection.	OVOC server side / Bi- directional
Device → OVOC server Floating License Management	TCP (HTTPS)	V	443	HTTPS connection for files transfer (upload and download) and REST communication for device Floating License Management. Initiator: Device	OVOC server side / Bi- directional

Connection	Port Type	Secured Connection	Port Number	Purpose	Port side / Flow Direction
Devices Managed by the Device N	/lanager		1	1	ı
Endpoints ↔ OVOC Device Manager	TCP (HTTPS)	√	443	HTTPS connection between the Endpoints and the OVOC Device Manager. Initiator: Endpoints HTTPS connection that is used by endpoints for downloading	OVOC Device Manager side, Bi-Directional
				firmware and configuration files from the OVOC Device Manager. Initiator: Endpoints	
OVOC Device Manager ↔ ShareFile	TCP (HTTPS)	V	443	HTTPS connection used by OVOC Device Manager for downloading firmware and configuration files from ShareFile.	OVOC Device Manager side, Bi-Directional
				Initiator: OVOC Device Manager For information on ShareFile IP Ranges, see ShareFile Firewall Configuration.	
OVOC Voice Quality Package Serv	er and Devices				J
Media Gateways ↔ Voice Quality Package	TCP (TLS)	V	5001	XML based TLS secured communication for control, media data reports and SIP call flow messages.	OVOC server side / Bi- directional
				Initiator: AudioCodes device	
LDAP Active Directory Server		Ι.	ı		
OVOC server ↔ Active Directory LDAP server (OVOC user authentication)	TCP (TLS)	V	636	Connection between the OVOC server and the Active Directory LDAP server (OVOC Users) with SSL configured.	Active Directorserver side/ Bi-directional
Audia Cadas Floating License Same	ina			Initiator: OVOC server	
AudioCodes Floating License Serv	TCP	√	443	HTTPS for OVOC/ Cloud Service	OVOC REST
OVOC server ↔ AudioCodes Floating License Service	TCP	V	443	HTTPS for OVOC/ Cloud Service Initiator: OVOC REST client	client side / B
External Servers					
OVOC server ↔ Mail Server	ТСР	×	25	Trap Forwarding to Mail server Initiator: OVOC server	Mail server sid / Bi-directiona
OVOC server \leftrightarrow Syslog Server	ТСР	×	514	Trap Forwarding to Syslog server. Initiator: OVOC server	Syslog server side /Bi- directional
OVOC server ↔ Debug Recording Server	UDP	×	925	Trap Forwarding to Debug Recording server. Initiator: OVOC server	Debug Recording server /Bi- directional
OVOC server ↔Remote Managed Device	TCP RDP	1	3389	Remote Desktop access Apache to Managed Device through the Guacamole VPN gateway. Initiator: OVOC server	Managed Device/Bi- directional
Voice Quality				1	
Voice Quality Package ↔	UDP	×	5060	SIP Publish reports sent to the SEM	SEM server /

Connection	Port Type	Secured Connection	Port Number	Purpose	Port side / Flow Direction
Endpoints (RFC 6035)				server from the endpoints, including RFC 6035 SIP PUBLISH for reporting device voice quality metrics. Initiator: Endpoint	Bi-directional

5 Step 4: Securing SNMP Interface Access (OVOC)

This chapter describes the guidelines for implementing SNMP for the connection with AudioCodes devices.

Securing Trap Forwarding over SNMPv3

The SNMPv3 protocol can be used for securing traps that are generated on devices. The SNMP connection must be configured on both OVOC and on the devices. It is recommended to set the following for maximum security:

- Security Level parameter to 'Authentication and Privacy'
- Authentication Protocol parameter to 'SHA'
- Privacy protocol to 'AES_128'

For configuring SNMPv3 on devices, refer to Section "Automatic Detection" in the *OVOC User's Manual*.

- It is recommended to use SNMP Version 3 (SNMPv3) (and not SNMPv1 and SNMPv2c). SNMPv3 provides secure access to the device using a combination of authentication (MD5 or SHA-1) and encryption (DES or AES-128) of packets over the network.
- For Cloud platforms (Microsoft Azure and Amazon AWS) SNMP is by default disabled for security reasons. To enable it, in the managed SBC devices Web interface, set parameter 'Disable SNMP' to No (Setup menu > Administration tab > SNMP folder > SNMP Community Settings).

6 Step 5: Implementing X.509 Authentication

X.509 certificates can be used to authenticate a connection between an OVOC client and the OVOC servers (Apache and Tomcat); between the OVOC server and external third-party servers in the Enterprise network (Active Directory LDAP server and MS-SQL Monitoring server) and between the OVOC server and AudioCodes' devices. The certificates may be implemented for one or more of the SSL connections described in the table below.

- The OVOC Apache and Tomcat servers and their clients can use the same certificate files.
- The Active Directory and Skype for Business MS-SQL Monitoring servers use Microsoft certificates.

Types of Certificates

The above connections can be implemented using the following types of certificates:

- Default Certificates: AudioCodes self-signed certificates are by default installed on the OVOC server and used by default for the OVOC and NBIF clients TLS (HTTPS) connections. For securing the connection with AudioCodes devices over TLS (HTTPS), these Certificates need to be taken from the OVOC server directory and loaded to the AudioCodes devices.
- Custom Certificates: Custom certificates can be generated and imported to the OVOC server. These certificates are generally signed by the Enterprise's external CA. If Enterprises use their own organizational certificate Infrastructure (PKI) for enhanced security, then these certificates can be deployed using the OVOC Server Manager utility menu option 'Server Certificate Updates'. This option enables you to generate the private keys, the Certificate Signing Requests and import the files received from the CA to the OVOC server.

When implementing a TLS (HTTPS) connection with AudioCodes devices, the default OVOC AudioCodes device certificates must be loaded to AudioCodes devices (see Connecting OVOC to Managed Devices with HTTPS Certificate Mutual Authentication on page 46 and Connecting OVOC to Managed Devices with Cloud Architecture Mode (WebSocket Tunnel) on page 42). In addition, when replacing default certificate files with custom certificate files (see Generating Custom OVOC Server Certificates); these certificate files should also be loaded to the AudioCodes devices.

Multiple TLS Contexts for Device Connections

You can apply different TLS Contexts when uploading an auxiliary file "X509 Private Key" to a device. By default, the SBC connection with OVOC is secured with Context #0. However, the device may use different certificates for other connections. For example, an additional OAMP interface or a separate interface for Microsoft Teams.

Recommended Workflow

The section describes the recommended workflow for implementing X.509 authentication.

OVOC Client and Servers

- 1. Setup HTTPS connections using default certificates
- Implement custom server certificates (overriding default certificates) using the OVOC Server Manager Server Certificates Update option (see Generating Custom OVOC Server Certificates on page 38).

Before you replace the default certificates with custom certificates, it is recommended to setup all of the HTTPS connections with the default certificate deployment to verify that these connections are working as required.

Devices

Setup the endpoint connections for REST updates and statutes sent from end user devices and for downloading firmware and configuration files. Connection with devices is over SSL without certificate authentication.

External Connections

- Setup the SSL connections with the Microsoft Skype for Business Active Directory and MS-SQL servers: These connections are secured using Third-party certificates. See Microsoft Connections on page 36
- OVOC Floating License Server (see OVOC and Floating License Service Connections on page 38)
- Setup the RADIUS server connection. This connection is secured by a RADIUS secret password and other RADIUS parameters: Refer to Step 2: Managing OVOC Users on page 11 for setting up user authentication and to the *Northbound Integration Guide* for setting up the RADIUS client and server.
- Data Analytics API: If you have purchased a license to use the Data Analytics API from Northbound Interfaces, see Data Analytics API on page 53

Enabling HTTPS SSL TLS Connections

The OVOC installation and the AudioCodes device are installed with default certificates as described above. Apart from the connection with AudioCodes devices, all other connections are by default secured over HTTPS and therefore need to be enabled to run over HTTPS.

For browser and Java version compatibility, refer to OVOC Client Requirements in the *One Voice Operations Center IOM manual*.

The figure below shows the maximum security that can be implemented in the OVOC environment.

Device Manager Pro Web Client NBIF Client OVOC Client TCP (HTTPS 443) TCP (HTTPS 443) OVOC Platform Floating License Service (443) Cassandra DB PostgreSQL Apache (443/8082) TCP (HTTPS 443) TCP (TLS 636) LDAP Server (OVOC Operators) (636) UDP (1812) Voice Quality Package MS Lync Server (636) TCP (HTTPS 443) OVOC Serve TCP (HTTPS 443/8082) RADIUS Server (OVOC Operators) (1812) TCP (TLS 1433) OVOC Managed Devices (443/5001) SQL Server MS-SQL Server (1433) Microsoft Teams (443) Endpoints

Figure 6-1: OVOC Maximum Security Implementation

This version supports TLS versions 1.0, 1.1. and 1.2

The following connections are described in this section:

Table 6-1: OVOC Connections

Connection Type	Reference
OVOC HTTPS client ↔ OVOC Apache server	OVOC Web Client on the next page
OVOC Device Manager Pro browser ↔ OVOC	Device Manager Pro Web Client on the next page

Connection Type	Reference			
Apache Server				
OVOC server ↔NBIF client	NBIF Client on page 53			
OVOC server ↔ OVOC Managed Devices	OVOC and Floating License Service Connections on page 38			
OVOC Voice Quality Package ↔ Endpoints	OVOC Voice Quality Package and Enterprise Device Communication on page 36			
Third-Party Vendor Server Connections				
OVOC server ↔ Active Directory LDAP server- User authentication	LDAP Server on page 11			
OVOC server ↔ RADIUS server- User authentication	RADIUS Server on page 12			
OVOC server ↔ Microsoft Azure- User Authentication	Microsoft Azure on page 11			
OVOC server ↔ Microsoft Active Directory LDAP Server Skype for Business	Active Directory Server (Skype for Business Users) – OVOC Voice Quality Package on page 36			
OVOC server ↔ Skype for Business MS-SQL Server Skype for Business Server	OVOC and Skype for Business MS-SQL SSL Connection— Voice Quality Package on page 37			
OVOC server ↔ Microsoft Teams	OVOC and Microsoft Teams Notification Subscription Service on page 37			

OVOC Web Client

The OVOC Web client connection is by default enabled over HTTPS through port 443 using AudioCodes default self-signed certificate.

Device Manager Pro Web Client

The connection to the Device Manager Pro Web page is by default enabled over HTTPS through port 443. This is managed by the OVOC Server Manager option 'IP Phone Management Server

and NBIF Web pages Secured Communication' (refer to 'IP Phone Manager Pro and NBIF Web pages Secured Communication' in the IOM manual). This connection is secured using the AudioCodes self-signed certificate. In addition, in the Device Manager Pro configure the following:

- 'Secure (HTTPS) communication from the Device Manager to the Devices' (Setup tab > System Settings). When configured, this parameter secures requests from the Device Manager Pro to the device over HTTPS. Communications and REST actions such as Restart, Send Message will be performed over HTTPS. This parameter is not relevant when using an SBC proxy.
- Devices Status: 'Open Device Manager Web Administrator using HTTPS' (Setup tab > System Settings). When configured, this parameter opens the HTTPS Web page seamlessly without prompting whether the page is secure to open.
- Jabra Integration Service: to secure the connection between the managed device and OVOC over HTTPS, configure the IP address of the OVOC server as follows:

https://<OVOC Server_IP address

For more information, refer to the *Device Manager for Third-Party Vendor Products* manual.

Device Manager Connections

The HTTPS connection between devices and the Device Manager Pro is managed as follows:

- REST connection for alarms and statuses: This connection is implemented over SSL (encryption only without SSL authentication) using the AudioCodes self-signed certificate, where the default AudioCodes certificates are used to encrypt the data. If you replace the default AudioCodes server certificates on the OVOC server with custom certificates, this does not affect the HTTPS connection between the endpoints and the OVOC server i.e. data is still encrypted using the default certificates.
- Download configuration and firmware files to the devices over HTTPS through port 443 (see Device Manager Pro Web Client on the previous page).
- "Secure (HTTPS) communication from the Device Manager to the Devices" (default not enabled): Sends secured (HTTPS) requests from the Device Manager Pro server to the phones. If this option is selected, communications and REST actions such as Restart, Send Message, etc. are performed over HTTPS. This parameter is not relevant when using an SBC HTTPS (OVOC Services) proxy server.
- "Secure (HTTPS) communication from the Devices to the Device Manager" (default not enabled): Sends secured (HTTPS) requests from the phones to the Device Manager Pro server. If this option is selected, communications and REST updates such as keep-alive, alarms and statuses between the phones and OVOC server are performed over HTTPS. This parameter is also relevant for loading firmware and configuration files, and when using an SBC HTTPS (OVOC Services) proxy server.
- Devices Status: Open Device Web Administrator using HTTPS (default not enabled): The browser immediately opens the device's Web interface, over HTTPS, without prompting

that there is a problem with the website's security certificate and that it is not recommended to continue to the website.

- Only allow devices added by the administrator into OVOC:
 - Phones that were not added by the network administrator will be blocked by the OVOC.
 - If a device's Mac Address is not listed in the 'Manage Users & Devices' page, it is blocked by OVOC. OVOC must be restarted for the parameter to take effect.

Device Manager Pro Integration with EPOS (Sennheiser) Headset Devices (Beta)

The Device Manager Pro Integration with EPOS (Sennheiser) for managing EPOS devices directly in the AudioCodes One Voice Operations Center (OVOC) requires an active connection to the cloud for connecting between the OVOC server and EPOS server.

OVOC Voice Quality Package and Enterprise Device Communication

The XML-based communication for OVOC Voice Quality Package connection with AudioCodes devices is by default non-secured. If you wish to secure this connection over TLS, you must configure the SEM – AudioCodes devices communication' option in the OVOC Server Manager. This setting secures the connection over port 5001 instead of port 5000 (you can also configure this option to open both ports 5000 and 5001, refer to 'OVOC Quality Package - AudioCodes Devices Communication' in the *IOM* manual). The connection is then secured using the AudioCodes self-signed certificate.

Microsoft Connections

This section describes how to authenticate the following Microsoft connections:

- Active Directory Server (Skype for Business Users) OVOC Voice Quality Package below)
- OVOC and Skype for Business MS-SQL SSL Connection— Voice Quality Package on the next page)
- OVOC and Microsoft Teams Notification Subscription Service on the next page

Active Directory Server (Skype for Business Users) – OVOC Voice Quality Package

This section describes how to secure the connection between the OVOC and the Skype for Business Active Directory server for managing Skype for Business users using the OVOC Voice Quality Package. This connection is secured using Microsoft certificates. When these certificates are loaded to OVOC, the /opt/ssl/keystore.jks directory is updated.

> Do the following:

- Open the Software Manager (System > Configuration > File Manager), then click Add > Add Auxiliary File, select File Type 'Certificate' and add the required certificate file.
- 2. Open the Active Directory Settings page (Users tab > Active Directories) and then click Edit.

- 3. Select the 'Enable SSL' check box and then from the Certificate file drop-down list, select the certificate file that you loaded in step 1.
- 4. You can authenticate the Active Directory connection using either the IP address of the Active Directory Domain Controller (default) or it's FQDN host name. To configure the latter option, in the Active Directory Details screen, select the View Certificate Subject Name check box. In this case, the OVOC server is an SSL client that verifies the FQDN specified in the Certificate file used to authenticate the connection with the Active Directory Domain Controller.

For more information, refer to the One Voice Operations Center User's Manual.

OVOC and Skype for Business MS-SQL SSL Connection—Voice Quality Package

This section describes how to secure the connection between the OVOC server and the Skype for Business MS SQL Monitoring server for monitoring using the OVOC Voice Quality Package. This connection is secured using Microsoft certificates. When these certificates are loaded to OVOC, the /opt/ssl/keystore.jks directory is updated.

➤ Do the following:

- Open the Software Manager (System > Configuration > File Manager), then click Add >
 Add Auxiliary File, select File Type 'Certificate' and add the required certificate file.
- Open the MS Lync/Skype Device Details screen (Network tab > Topology), select the Skype for Business device and then click Edit.
- **3.** From the SSL drop-down list, select Using Certificate and then from the Certificate File drop-down list, select the certificate file that you loaded in step 1.
- 4. From the Connection Mode drop-down list, select whether you wish to connect to the MS-SQL Server using the MS-SQL password or the Microsoft Windows password.

For more information, refer to the One Voice Operations Center User's Manual.

OVOC and Microsoft Teams Notification Subscription Service

OVOC connects to Microsoft Teams for retrieval of QoE data (Subscription Notifications service) on Office 365/Microsoft 365/Microsoft Azure. Permissions for data access is granted for the managed Microsoft Tenant. In addition, the Directory (tenant) ID and the Client (application) ID are required to establish the connection. refer to 'Setting Up Microsoft Teams Subscriber Notifications Service Connection' in the *IOM*.

The Notification Subscription Service requires the installation of a custom generated certificate. OVOC default certificates cannot be used to secure this connection.

OVOC Floating License Connections

Connection between SBC devices and OVOC is established over SNMP and the functionality of the Floating License service is managed over the TCP/HTTPS REST connection. The following

connections are managed:

- OVOC Floating License Connections on the previous page
- OVOC Managed Devices and Floating License Application Connection below

OVOC and Floating License Service Connections

The connection between OVOC and AudioCodes Floating License service (Cloud Mode) is secured over TCP HTTPS port 443 with one-way authentication by OVOC using an AudioCodes provided CLM Server certificate. The CLM server certificate is located in directory /opt/ssl/clm/. The certificate is automatically installed for version 7.4.3000 and later.

This certificate must not be replaced or deleted or modified in any way (only in the event of a clean installation or upgrade of OVOC) and must only be used for the HTTPS connection to the Floating License service.

This connection is also secured using an AudioCodes provided shared secret password (Product Key string) that should be configured in the Floating License Key field in the Device Floating License page in the OVOC Web. You can find the Product Key in the License Summary screen (System menu, Administration tab, License > Summary) in the OVOC Web.

The Floating License Server Status is displayed in the OVOC Server Manager. refer to Viewing Process Statuses in the *IOM*.

OVOC Managed Devices and Floating License Application Connection

Connection between SBC devices and OVOC is managed as follows:

- The initial connection is established over SNMP and all OVOC initiated updates, such as Operator user or password changes are sent to the managed devices over SNMP.
- All SBC device initiated requests are sent over REST HTTPS port 443 and the Floating License application process on OVOC replies over this connection (HTTPS server). This connection is secured by default using the OVOC devices certificate (taken from the OVOC installation directory and installed on the managed devices). In addition, a Floating License OVOC Operator must be defined for managing this REST connection and the feature must be enabled on all devices that you wish to manage. This operator is defined in the OVOC Web Device Floating License page (System > Administration > License > Device Floating License).
- A proxy server is implemented for the connection between OVOC and the AudioCodes Floating License Service and can be configured using the OVOC Server Manager option "Proxy Settings".

Generating Custom OVOC Server Certificates

Default SSL certificates can be replaced by custom certificates using the Server Certificates Update menu option in the OVOC Server Manager (see 'Server Certificates Update' in the IOM).

The figures below illustrate the workflow process for deploying the new custom server certificates using this menu option.

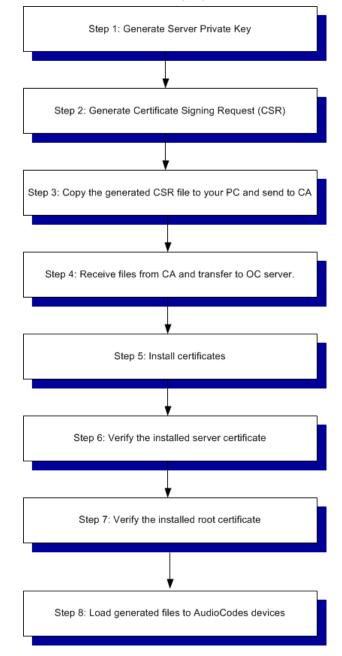


Figure 6-2: Server Certificate Deployment Workflow

- **Step 1:** Generate the Server Private Key according to selected required bits.
- **Step 2:** Generate the Certificate Signing Request (CSR) with the private key password generated in step 1 and personal/corporate identification details.
- **Step 3:** Copy the CSR to your PC and send to the desired root CA for signing.
- **Step 4:** Copy the certificate files that you receive back from the root CA to the OVOC server.
- Step 5: Install the certificate files

HA systems must be uninstalled, and then you must perform this procedure separately on both server machines (as Stand-alone machines).

- **Step 6 & 7:** Run verification procedures to verify that the certificates have been installed.
- Step 8: Load the generated files to AudioCodes devices: For securing connection with AudioCodes devices, you must also load the generated files to AudioCodes devices as described in either of the following procedures:
 - Connecting OVOC to Managed Devices with HTTPS Certificate Mutual Authentication on page 46
 - Connecting OVOC to Managed Devices with Cloud Architecture Mode (WebSocket Tunnel) on page 42

- If you did not generate the Certificate Signing Request using the OVOC Server Manager:
 - ✓ Follow the workflow procedures for step 4 onwards.
 - ✓ You need to create the /home/acems/server_certs directory (refer to the Server Certificates Update procedure in the IOM manual).
- The root certificate should be named root.crt and that the server certificate should be named server.crt. If you received intermediate certificates then rename them to ca1.crt and ca2.crt.
- Make sure that all certificates are in PEM format (refer to Appendix "Verifying and Converting Certificates" in the IOM manual).
- The OVOC Server issues a warning prior to the certificate expiration date. For more information, refer to the OVOC Alarms Guide.

7 Step 6: Managing Device Connections behind NAT

When the connections between the OVOC server and the managed devices traverse a firewall or NAT, direct connections cannot be established (both for OVOC > Device connections and for Device > OVOC connections). OVOC provides methods for overcoming this issue. These methods can be used for both initial setup and Second-Day management:

- Establishing Connections for OVOC Managed Devices below
- Establishing Connections for Device Manager Devices on page 49

For configuration of the different firewall rules for each configuration option, see Firewall Rules for NAT Configuration Options on page 26

Establishing Connections for OVOC Managed Devices

- When OVOC is deployed behind a firewall or NAT in the cloud or in a remote network, it cannot establish a direct connection with managed devices using its private IP address. Consequently, the following methods can be used to overcome this issue:
 - For OVOC Cloud deployments: Configure the OVOC server public IP address.
 - For OVOC deployments in a remote public network: Configure the IP address of the NAT router.

See Configure OVOC Server with Public or NAT IP Address on page 45
In addition, to secure an HTTPS SSL connection with mutual authentication, see Connecting
OVOC to Managed Devices with HTTPS Certificate Mutual Authentication on page 46

- When devices are deployed behind a firewall or NAT in the cloud or in a remote network, they cannot connect establish a direct connection with the OVOC server. Consequently, the following methods can be used to overcome this issue:
 - Automatic Detection below
 - Configure Cloud Architecture (WebSocket Tunnel) on the next page

- All of the above options requires a configured WAN interface on the managed AudioCodes devices.
- Single Sign-on to OVOC devices Web interface is only supported for the Cloud Architecture option.

Automatic Detection

Devices are connected automatically to OVOC through sending SNMP Keep-alive messages.

Refer to Section "Adding AudioCodes Devices Automatically" in the OVOC User's Manual.

Configure Cloud Architecture (WebSocket Tunnel)

When OVOC-managed devices are deployed in a public cloud and managed devices are either deployed either in the Cloud or in a remote enterprise network, an automatic mechanism can be enabled to secure the OVOC server and Device communication through binding to a dedicated HTTPS tunnel through a generic WebSocket server connection. This mechanism binds proprietary OVOC server > SBC/UMP-365/SmartTAP 360° Live connections including SNMP, HTTPS, syslog and debug recording into an HTTPS tunnel overlay network. This eliminates the need for administrators to manually manage firewall rules for these connections and to lease third-party VPN services. Using this configuration, Single Sign-on to managed devices can be performed from the Devices Page link in the OVOC Web interface for devices managed behind a NAT. The figure below illustrates the OVOC Cloud Architecture.

OVOC in Cloud

Session Border Controller

Coudiocodes

SmartTAP 360° Live

Fireyall

Wicrosoft Azure

Microsoft
Hyper-V

Microsoft
Hyper-V

Session Border Controller

Coudiocodes

SmartTAP 360° Live

Wicrosoft Fiams

User Management Pack

Microsoft
Hyper-V

Figure 7-1: Cloud Architecture

- This mode is supported on Microsoft Azure, Amazon AWS, VMware and HyperV platforms for all SBC devices Version 7.2.256 and later; SmartTAP Version 5.5 and later and UMP 365 Management Pack Version 8.0.220 and later.
- This mode only supports IPv4 networking.

Connecting OVOC to Managed Devices with Cloud Architecture Mode (WebSocket Tunnel)

This section describes how to securely connect SBC devices to the OVOC server when the HTTP Tunnel Overlay Cloud Architecture feature is enabled.

Mutual authentication is not supported for this mode.

- > To secure the connection between OVOC and devices over cloud architecture mode:
- 1. On the managed AudioCodes device do either of the following:

Copy default OVOC device certificates from the /home/acems/boardCertFiles directory
on the OVOC server directory (see example below) to an external location and then
load them to the managed AudioCodes devices.

```
[root@vmware-low-219boardCertFiles]# pwd
/home/acems/boardCertFiles
[root@vmware-low-219 boardCertFiles]# II
total 12
-rw-r--r-- 1 acems dba 615 Dec 3 15:53 board_cert.pem
-rw-r--r-- 1 acems dba 887 Dec 3 15:53 board_pkey.pem
-rw-r--r-- 1 acems dba 704 Dec 3 15:53 root.pem
```

Install custom certificates on the managed AudioCodes devices.

Refer to "Installing Custom Certificates on OVOC Managed Devices" in the IOM manual).

- On the managed device Web interface, open the Web Settings page and set parameter Secured Web Connection (HTTPS) to one of the following:
 - HTTP and HTTPS
 - HTTPS Only

acaudiocodes SRD All Web Settings WEB & CLI SECURITY GENERAL Local Users (3) Authentication Serve HTTP and HTTPS Deny Authentication Timer Secured Web Connection (HTTPS) Web Hostname abc.com Valid time of Deny Access counting Access List Local Users Table can be Empty Deny Access On Fail Count (0 = No Deny) Active Users Display Last Login Information Customize Access Level (0) DNS Rebinding Protection Disable ^ SNMP Invalid Login Report general information 0 LICENSE MAINTENANCE PERFORMANCE MONITORING

Figure 7-2: SBC Web Settings Page

- **3.** For additional HTTPS configuration on the managed device, refer to Step 5: Configure HTTPS Parameters on the Device
- **4.** In the OVOC Web interface, ensure that device and tenant connections are enabled for HTTPS.

Figure 7-3: Tenant Details

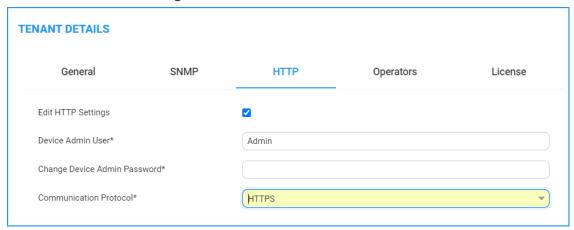
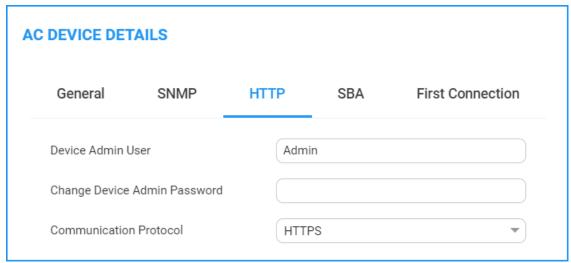



Figure 7-4: Device Details (Default HTTPS)

5. In the OVOC Web interface Configuration page(System menu >Administration tab > OVOC Server folder > Configuration > General Settings tab), configure the SBC Devices Communication parameter to IP Based: OVOC Server IP address is used to secure the device communication.

Melcome acladmin

Melcome aclad

Figure 7-5: SBC Devices Communication

If this parameter is set to "Hostname Based" and the Cloud Architecture feature is enabled in the OVOC Server Manager, then the connected devices cannot be managed for this OVOC instance.

6. Enable the option "Enable Cloud Architecture" in the OVOC Server Manager (refer to Configuring Cloud Architecture Mode"in the *IOM* manual).

Its highly recommended to add custom users and passwords for this mode using the OVOC Server Manager as described in the above cited section in the *IOM* manual.

7. Ensure port 443 is open on the Enterprise firewall.

Configure OVOC Server with Public or NAT IP Address

The OVOC server can be configured with the public IP address of the OVOC deployment platform. For example, when OVOC is deployed in the AWS or Azure Cloud, the public IP address for accessing these platforms over the internet is configured. Managed devices may be remotely deployed either in the cloud or in a remote enterprise network.

- refer to 'Configure OVOC Server with Public IP Address or NAT IP Address' in the IOM manual.
- For Configuration of firewall rules, see Firewall Rules for NAT Configuration Options on page 26
- For configuring NAT per tenant, see Configuring NAT per Tenant on the next page

- Single Sign-on to the SBC devices Web interface is not supported for this configuration option.
- When the "Cloud Architecture" mode is enabled, this option does not appear in the "Network Configuration" menu.

Configuring NAT per Tenant

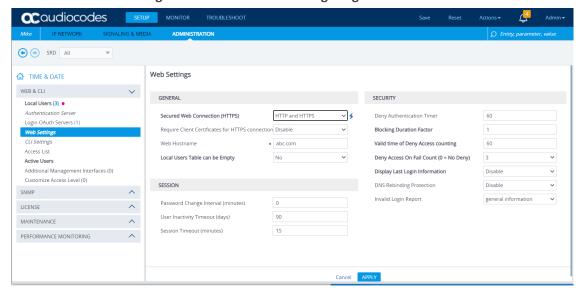
An option in the OVOC Server Manager Networking menu allows the configuration of an applicative level NAT interface for each tenant domain; Devices' incoming communication like SNMP traps, license reports and file upload/download will communicate via the tenants' NAT interface. Until now, NAT could be configured only at OVOC network interface level. See ConfigureOVOC Server with IP Address per Tenant in the OVOC IOM.

Connecting OVOC to Managed Devices with HTTPS Certificate Mutual Authentication

The OVOC server and AudioCodes device connection is by default over HTTPS and is secured for the purpose of files upload/download and REST communication and for Single Sign-on from the Device page in the OVOC Web interface. This section describes how to configure the connection between the OVOC server and managed devices when the "Cloud Architecture feature (Configure Cloud Architecture (WebSocket Tunnel) on page 42 is disabled.

Single Sign-on to devices Web interface is not supported for devices deployed behind a NAT (see Establishing Connections for OVOC Managed Devices on page 41)

To connect OVOC to managed devices over HTTPS:


- 1. On the managed AudioCodes device do either of the following:
 - Copy default OVOC device certificates from the /home/acems/boardCertFiles directory
 on the OVOC server directory (see example below) to an external location and then
 load them to the managed AudioCodes devices.

[root@vmware-low-219boardCertFiles]# pwd
/home/acems/boardCertFiles
[root@vmware-low-219 boardCertFiles]# II
total 12
-rw-r--r-- 1 acems dba 615 Dec 3 15:53 board_cert.pem
-rw-r--r-- 1 acems dba 887 Dec 3 15:53 board_pkey.pem
-rw-r--r-- 1 acems dba 704 Dec 3 15:53 root.pem

 Install custom certificates. Refer to 'Installing Custom Certificates on OVOC Managed Devices' in the IOM manual.

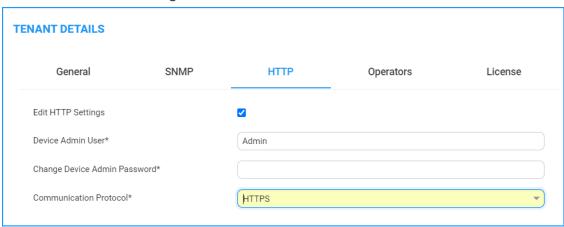

- 2. On the managed device Web interface, open the Web Settings page and set parameter Secured Web Connection (HTTPS) to either of the following:
 - HTTP and HTTPS
 - HTTPS Only

Figure 7-6: SBC Web Settings Page

- **3.** For additional HTTPS configuration on the managed device, refer to Step 5: Configure HTTPS Parameters on the Device
- In the OVOC Web interface, ensure that device and tenant connections are enabled for HTTPS.

Figure 7-7: Tenant Details

AC DEVICE DETAILS

General SNMP HTTP SBA First Connection

Device Admin User Admin

Change Device Admin Password

Communication Protocol HTTPS

Figure 7-8: Device Details (Default HTTPS)

- 5. In the OVOC Web interface Configuration page (System menu >Administration tab > OVOC Server folder > Configuration > General Settings tab), configure the SBC Devices Communication parameter:
 - Hostname Based: OVOC Server FQDN Hostname configured in the OVOC Hostname field is used to secure the device communication. Specify the hostname in the format "OVOC-Hostname.com".
 - IP-Based: OVOC Server IP address is used to secure the device communication.

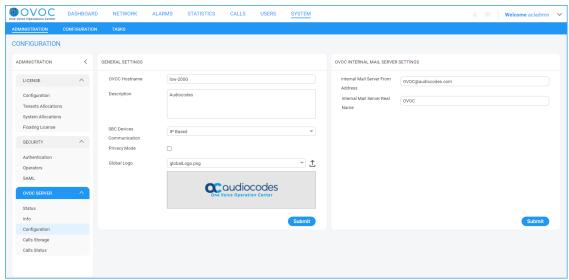


Figure 7-9: SBC Devices Communication

6. In the OVOC Server Manager implement Two-Way Authentication with X.509 Certificates: Set the SBC HTTPS Authentication option 'Set Mutual Authentication' (refer to 'SBC HTTPS Authentication Mode' in the *IOM* manual).

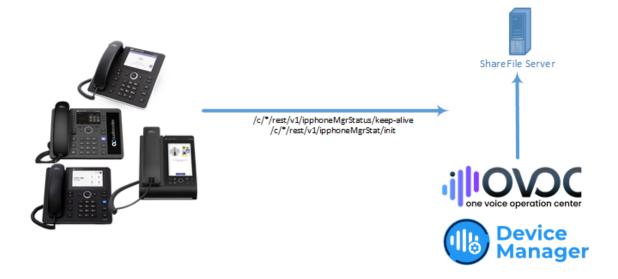
It is recommended to use two-way authentication over HTTPS between the device and the OVOC. This prevents unauthorized access to both OVOC and the device. This setup requires the installation of trusted root certificates on both the device and the OVOC server. These

certificates can be generated using the OVOC Server Manager option "Trust Store Configuration" (see Generating Custom OVOC Server Certificates on page 38).

7. Ensure that port 443 is open on the enterprise firewall.

Establishing Connections for Device Manager Devices

The diagram below illustrates the provisioning topology.


When devices are deployed behind a firewall or NAT and connect to OVOC over HTTP/S public internet connection, they (AudioCodes phones and Jabra devices) send keep-alive messages to OVOC at one-minute intervals for the purpose of querying the OVOC server for firmware updates. OVOC then updates the endpoints with files retrieved from the ShareFile server (see figure below).

Polycom devices do not send keep alive messages and instead send status messages.

The Device Manager FQDN (**System > Configuration > OVOC Server**) should be configured in the OVOC Web interface to specify the OVOC Server FQDN.

- When the Device Manager is deployed in a cloud environment, it's strongly recommended to implement VPN communication between OVOC (Device Manager) server and endpoints.
- When the Device Manager is deployed in an internal network or in a private cloud environment, no additional definitions are required. Deployment On-premises should be restricted to either an internal network or a private cloud environment.
- SharePoint: Citrix recommends as a best practice that customers leverage domain inclusion instead of IP address inclusion as described here: SharePoint Best Practices. This is due to frequent changes of cloud services to scale up and to introduce new services. For valid IP address ranges, see Step 3: Configuring Enterprise Firewall on page 21.
- Port 443 must be open from endpoints toward Device Manager and Azure Blob and between Device Manager and Step 3: Configuring Enterprise Firewall on page 21.

Microsoft Teams phones do not have REST server capabilities; they cannot receive REST commands such as Device Reset and configuration and firmware files updates. Instead when the Device Manager Pro performs such actions on the Teams phones (PUT and POST only), the commands are embedded in the HTML response in the Keep-alive messages that are sent from the Teams phones at one minute intervals. See example HTML Keep-alive response below.

```
{
  "requests":[
  {
    "method":"PUT",
    "path":"Vrest\v1\vcommand\vResetGracefulHandler",
    "body":{
        "sessionId":"f0144216",
        "emsUserName":"elic@audiocodesipprnd.onmicrosoft.com",
        "emsUserPassword":"81c11125567a212da873582b82e3efb6",
        "schedulePeriod":""
    }
}
```


- The initial connection with Android Teams devices is established using AudioCodes default Root CA. Its highly recommended to replace this certificate with custom certificates.
- For management of Polycom Trio devices, Polycom VVX devices and Spectralink 8440 devices, OVOC must directly establish connection with these devices.

Managing Multiple OVOC Interfaces

OVOC supports configuration of multiple IPv4/ or IPv6 ethernet interfaces. This allows SBC devices to connect to OVOC from different subnets to different ethernet interfaces.

- The OVOC Main Management interface only supports IPv4
- Each IPv4 or IPv6interface can be configured for NAT and one of the IPv4 interfaces can be configured to work in the Cloud Architecture mode.

In case gateways are located in different subnets, static routes should be provisioned to allow the connection from 'Southbound network interfaces' to each one of the subnets. For Static Routes configuration, see Static Routes.

OVOC supports the management of multiple ethernet interfaces with the following scenarios:

- NAT IP Interface (see Section "Configure OVOC Server with NAT IP Address per Interface" in the IOM)
- WebSocket Tunnel (Cloud Architecture Mode) (see Section "Configure OVOC Cloud Architecture Mode-WebSocket Tunnel in the IOM)
- Public IP address
- Private IP address

The IP address that is sent to the SBC devices upon connection establishment and the IP address that is used for License Management, Software download and backup configuration is determined according to the following logic:

- If this interface is configured with Cloud architecture mode (see Section "Configure OVOC Cloud Architecture Mode-WebSocket Tunnel in the IOM), OVOC will sent/use tunneling websocket IP 169.254.0.1.
- If this interface is configured with a NAT IP address (see Section "Configure OVOC Server with NAT IP Address per Interface" in the IOM), OVOC will use the NAT IP address of this interface.
- If this interface is configured with a public IP address, OVOC will use the public IP address, otherwise, OVOC sends the private IP address of the interface.

The interface used can be verified manually by using the following command with root permissions:

ip route get <IP>

```
[root@aclovoc01 ~] # ip route get 10.15.77.35
10.15.77.35 via 10.1.0.1 dev ens160 src 10.1.8.24
```

In the output it can be seen that ens160 is used for this IP address. Only one interface can be selected from all interfaces on the server to be use for routing this IP address.

In the event where the customer wishes to use the private IP address of the interface while the interface still uses the public IP address, it is recommended to configure the NAT IP address (see Section "Configure OVOC Server with NAT IP Address per Interface" in the IOM) with the value of the private IP address for the relevant interface. This affects the OVOC IP configuration on the SBC for license management, trap destination and the URL for software upgrade/backup INI and does not prevent using the public IP address for client management.

MSBR Device Connections

To ensure that the MSBR device connection seamlessly connects to OVOC over both IPv4 or IPv6 IP addresses, ensure that MSBR devices are added to OVOC using an FQDN and that the Enterprise DNS server is appropriately configured to resolve both address types.

Multiple TLS Contexts for Device Connections

You can apply different TLS Contexts when uploading an auxiliary file "X509 Private Key" to a device. By default, the SBC connection with OVOC is secured with Context #0. However, the device may use different certificates for other connections. For example, an additional OAMP interface or a separate interface for Microsoft Teams.

8 Step 7: Setting Up Northbound Interface Connections

This section describes key issues for connecting to external NOC systems. For more information, refer to the *Northbound Integration Guide*.

- Syslog messages and emails sent from the OVOC server to a northbound interface are not secured.
- Single sign-on is not supported for devices located behind a NAT, unless the Cloud Architecture feature is enabled, in which case, SBC device connections can be secured over an HTTP/S Tunnel Overlay network (see Configure Cloud Architecture (WebSocket Tunnel) on page 42).
- An SSH connection from the OVOC server to the device is not supported.

NBIF Client

Connection between the NBIF client and the OVOC server is by default secured over HTTPS over using AudioCodes default self-signed certificate. This is managed by the OVOC Server Manager option 'DeviceManagerPro andNBIFWebpages Secured Communication' in the OVOC Server Manager.

Logging into the OVOC client from a NBIF client requires a user name and password. This ensures that only authorized tenants can access this folder. The default user is "nbif" and the default password "pass_1234". This password can be changed using the "Change HTTP/S Authentication Password for NBIF Directory" option in the OVOC Server Manager (refer to 'Change HTTP/S Authentication Password for NBIF Directory' in the *IOM* manual).

Northbound User Authentication

It is recommended to authenticate user connections from Northbound interfaces with one of the following external authentication servers:

- LDAP Server (see LDAP Server on page 11)
- Microsoft Azure (see Microsoft Azure on page 11)
- RADIUS Server (see RADIUS Server on page 12)

For details on setting up a RADIUS server and client, refer to the Northbound Integration Guide.

Data Analytics API

When the Data Analytics feature is enabled in the OVOC Server Manager (refer to Data Analytics in the *IOM manual*), the connection with the OVOC server is established with user "Analytics" over port 1521 (non-secure connection, see Step 3: Configuring Enterprise Firewall on page 21).

This page is intentionally left blank.

International Headquarters

Naimi Park

6 Ofra Haza Street

Or Yehuda, Israel

Tel: +972-3-976-4000

Fax: +972-3-976-4040

AudioCodes Inc.

80 Kingsbridge Rd

Piscataway, NJ 08854, USA

Tel: +1-732-469-0880

Fax: +1-732-469-2298

Contact us: https://www.audiocodes.com/corporate/offices-worldwide

Website: https://www.audiocodes.com/

Documentation Feedback: https://online.audiocodes.com/documentation-

feedback

© 2024 AudioCodes Ltd.. All rights reserved. AudioCodes, AC, HD VoIP, HD VoIP Sounds Better, IPmedia, Mediant, MediaPack, What's Inside Matters, OSN, SmartTAP, User Management Pack, VMAS, VoIPerfect, VoIPerfectHD, Your Gateway To VoIP, 3GX, VocaNom, AudioCodes One Voice, AudioCodes Meeting Insights, and AudioCodes Room Experience are trademarks or registered trademarks of AudioCodes Limited. All other products or trademarks are property of their respective owners. Product specifications are subject to change without notice.

Document #: LTRT-94066

